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Abstract

Traditionally an infinitesimal neighbourhood of the identity element of a Lie

group is studied indirectly by using an appropriately chosen algebraic structure

such as a Lie algebra to represent it. In this thesis we use the theory of synthetic

differential geometry to work directly with this infinitesimal neighbourhood

and reformulate Lie theory in terms of infinitesimals. We show how to carry

out this reformulation for the established generalisation of Lie theory involving

Lie groupoids and Lie algebroids and make a further generalisation by replacing

groupoids with categories. Our main result is a proof of Lie’s second theorem

in this context. Finally we show how our new constructions and definitions

relate to the classical ones.
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Introduction

“Through the introduction and fundamental use of the infinitesimal

transformations, the theory of infinite continuous groups now takes

on a surprising simplicity.”

Sophus Lie in [26]. Translation by D. H. Delphenich.

A Lie group is at once a smooth manifold and group. These two structures

do not exist independently of each other: the operations of the underlying

group preserve the smooth structure of the underlying manifold. This means

that data contained in a small region around the identity element of the

group may be transferred smoothly and systematically around the rest of

the Lie group. In Lie theory we investigate how much of the information

contained in a Lie group can be reconstructed using only data that is within

an ‘infinitesimal neighbourhood’ of its identity element. Traditionally this

infinitesimal neighbourhood is studied indirectly by using an appropriately

chosen algebraic structure such as a Lie algebra to represent it.

Synthetic differential geometry is a theory which makes rigorous the notions

of infinitesimal object, infinitesimal action and infinitesimal transformation

that are often used heuristically in differential geometry. It is similar in

spirit to the non-standard analysis of [32]. However all of the infinitesimals

described in non-standard analysis are invertible but in synthetic differential

geometry we have a rich collection of infinitesimal objects which always includes

nilpotents and, depending on the model one chooses, germs of functions and

the invertible infinitesimals also. The initial motivating idea behind this thesis

was to use synthetic differential geometry to work directly with an infinitesimal

neighbourhood of the identity element of a Lie group rather than its algebraic

representation. It turns out that the nilpotent infinitesimals will play a central

11



12 INTRODUCTION

role in this reformulation.

In classical Lie theory we can in fact reconstruct all of the data in a Lie

group G from data in its Lie algebra g provided that G is simply connected.

The precise description of this relationship between Lie groups and Lie algebras

is encoded in the following fundamental theorems of Lie theory, which we refer

to as Lie’s first, second and third theorems respectively.

Theorem. Let G1, G2 be Lie groups and g1, g2 be the corresponding Lie

algebras. Then:

1. There is a bijection between connected Lie subgroups G1 ⊂ G2 and Lie

subalgebras g1 ⊂ g2.

2. If G1 is simply connected then there is a bijection between Lie group

homomorphisms G1 → G2 and Lie algebra homomorphisms g1 → g2.

3. Any Lie algebra is isomorphic to the Lie algebra of a Lie group.

For the proofs of these theorems and the precise definitions of the terms

involved we refer to Section 3.8 of [15]. It follows from these theorems that the

category of simply connected Lie groups is equivalent to the category of Lie

algebras. This thesis will mainly be concerned with Lie’s second theorem but

a few remarks will be made about Lie’s third theorem in Section 4.2.

In fact this thesis will use synthetic differential geometry to reformulate

the following established multi-object generalisation of Lie theory in terms of

infinitesimals. The appropriate global object that generalises the concept of

a Lie group is called a Lie groupoid which is defined as a groupoid internal

to the category of smooth manifolds for which the source and target arrows

are submersions. The condition on the source and target arrows is required

to ensure that the object of composable arrows of a Lie groupoid is again a

manifold. The algebraic structure that is used to represent an infinitesimal

neighbourhood of the identity elements of a Lie groupoid is called a Lie

algebroid. This is defined as a smooth vector bundle A→M together with a

bundle homomorphism ρ : A→ TM such that the space of sections Γ(A) is a

Lie algebra satisfying the Leibniz identity:

[X, fY ] = ρ(X)(f) · Y + f [X,Y ]
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Recall that in the classical setting Lie’s second theorem says that the functor

LieGrp
Te−→ LieAlg

that takes a Lie group its Lie algebra is full and faithful when the domain is

restricted to the subcategory of simply connected Lie groups. Similarly in the

multi-object setting there is a functor Te which assigns a Lie algebroid to every

Lie groupoid. The result corresponding to Lie’s second theorem still holds at

this higher level of generality: when we restrict Te to the subcategory of Lie

groupoids whose source fibres are simply connected it becomes full and faithful.

The main goal of this thesis is to formulate and prove a version of Lie’s

second theorem using the infinitesimal objects provided by synthetic differential

geometry. In fact we will be able to prove an even more general result stated

in terms of categories rather than groupoids. Although the categories that

will play the role of Lie groupoids will satisfy a condition which forces certain

arrows to be invertible they nevertheless may still have some non-invertible

arrows.

In fact there is another motivation for moving beyond classical differential

geometry when working with Lie groupoids and Lie algebroids. Recall that

in the classical setting Lie’s third theorem assures us that any Lie algebra

integrates to a simply connected Lie group. In categorical language this is

equivalent to the statement that the functor Te is essentially surjective. However

the same is not true for Lie algebroids. Any Lie algebroid integrates to a

topological groupoid, its Weinstein groupoid [7], but there can be obstructions

to putting a smooth structure on it. This suggests that instead of working in

the category of smooth manifolds it would be more convenient to work in a

category in which one can simultaneously make sense of tangent vectors and

Weinstein groupoids. In the paper [34] Tseng and Zhu show that the category

of differentiable stacks is suitable for this purpose and in this thesis we will

show that any well-adapted model of synthetic differential geometry (as defined

in Chapter 1) is also.

We now proceed to describe in general terms the definitions and construc-

tions that we will use in place of the those in classical Lie theory. We will delay

the precise analysis of how our definitions generalise the classical ones until

Chapter 5.
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In order to prove Lie’s second theorem we need to have a way of integrating

infinitesimal data to macroscopic data. In the classical setting since all Lie

groups are smooth manifolds we could appeal to well known results in differential

geometry concerning the existence of solutions to smooth vector fields. In

synthetic differential geometry however not all spaces are so well-behaved and

so it will be necessary to impose a condition on our categories that mimics

being able to find such solutions. It turns out that the integration that is

required for Lie’s second theorem is of a very specific kind and hence we require

a much weaker condition than being able to solve all smooth vector fields. For

example in [22] we find that the crucial transfer of information between the

infinitesimal and the macroscopic is contained in the equivalence of a certain

kind of path in the Lie algebra (which we will call A-paths) and paths in the

Lie group starting at the identity element (which we will call G-paths). It

turns out that when we have infinitesimals available to us the notion of A-path

can be expressed straightforwardly as a certain internal functor. Since the

definition of G-path doesn’t involve a limit we can transfer it immediately to

the synthetic setting. In order to isolate the categories for which these two

types of path coincide we employ the theory of factorisation systems and its

established relationship to completion operations as can be found in [16]. We

will call such categories ‘integral complete’ categories.

Now we recall the way in which two specific algebraic structures are used to

represent the part of a Lie group infinitesimally close to the identity element.

First we describe the representation that uses linear (or first order) infinitesimals

using a Lie algebra. Given a Lie group G we obtain a vector space by considering

the tangent space TeG at the identity element e. Then for each ve ∈ TeG we

define a vector field v : G→ TG on the whole of G by

vg = (DLg)eve

where Lg is left multiplication by g and D denotes the derivative. Now we

can define a Lie bracket on TeG by using the usual Lie bracket of vector

fields. Second we describe a representation that uses nilpotent infinitesimals

of all orders which is called a formal group law. Following [12] we define an

n-dimensional formal group law F to be an n-tuple of power series in the
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variables X1, ..., Xn;Y1, ..., Yn with coefficients in R such that the equalities

F ( ~X,~0) = ~X, F (~0, ~Y ) = ~Y and F (F ( ~X, ~Y ), ~Z) = F ( ~X,F (~Y , ~Z)) (1)

hold. We construct a formal group law from a Lie group G in two different

ways. The first uses local coordinates. By using Proposition 1.117 in [18]

we can assume without loss of generality that the multiplication of G is an

analytic function. We start by choosing an open inclusion ψe : Cn� G where

Cn is (−1, 1)n in Rn such that ψe(0) is the identity element e of G. Then

we choose any x, y ∈ im(ψe) such that xy is also in im(ψe). Hence we have

vectors ~X = ψ−1
e (x) and ~Y = ψ−1

e (y) in Rn and since G is analytic ψ−1
e (xy)

can be expressed as an n-tuple of power series in the variables ( ~X, ~Y ). It is

easy to see that the equalities (1) hold. The second way to associate a formal

group law to G is via its Lie algebra g. Given any Lie algebra one can form

its Campbell-Baker-Hausdorff series (see Section IV.8 of Part I in [33]) which

defines a formal group law. In fact the category of Lie algebras and formal

group laws are shown to be equivalent in Theorem 3 of Section V.6 of Part 2 in

[33]. When we form the infinitesimal part of a category C in Section 2.3.2 our

construction will correspond to the part of a Lie group represented by its formal

group law. In order to construct this subcategory ι∞ : C∞� C we will again

use the theory of factorisation systems. We will describe a modification of the

(Epi,Mono)-factorisation system which constructs, instead of just the image

of an arrow, the smallest subobject containing the image and all appropriately

defined ‘infinitesimal perturbations’ of this image. The categories for which ι∞

is an isomorphism we will call ‘jet categories’.

Using the jet and integral factorisation systems we can construct an ad-

junction

Cat∞(E) Catint(E)

(−)int

⊥

(−)∞

where Cat∞(E) is category of jet categories and Catint(E) is the category of

integral complete categories. In this context Lie’s second theorem says that

when we restrict its domain to the full subcategory of Catint(E) of objects

satisfying certain connectedness conditions that will be defined in Chapter 3 the
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functor (−)∞ is full and faithful. Our proof may be split into two stages. The

first uses the connectedness conditions to reduce the theorem to a statement

about A-paths and G-paths. Then we use the relationship between A-paths

and G-paths in integral complete categories to complete the proof.

The main original contributions of this thesis are:

• The construction of the jet part C∞ of a category C in E in Section 2.3.2.

• The counterexample in Corollary 2.3.22 which shows that, despite being

a category, the jet part G∞ of a groupoid G in E is not necessarily a

groupoid. Proposition 2.3.26 then identifies a condition on the arrow

space of G that ensures that G∞ is a groupoid.

• The construction of the Weinstein category WC of an arbitrary category

C in E in Section 3.5.

• The definition of integral complete category in Section 2.3.3. The main

result of the thesis is Theorem 4.1.6 which uses this integral completeness

condition to prove the key lifting property involved in Lie’s second

theorem. Corollary 4.1.9 then proves Lie’s second theorem in synthetic

differential geometry.

• Example 4.2.1 which shows that Lie’s third theorem does not hold for

the formulation of Lie theory presented in this thesis.

• Proposition 5.1.11 shows that all source path connected Lie groupoids

are E-path connected; Proposition 5.2.10 shows that the jet part of a

Lie groupoid is E-path connected; Proposition 5.4.14 shows that every

Lie groupoid is integral complete in the Cahiers topos; Corollary 5.3.12

shows that every simply connected Lie group is E-simply connected.



Chapter 1

Synthetic Differential

Geometry

“First, note that the usual ‘dynamical systems’ involving for ex-

ample the smooth actions of a monoid, if properly construed, will

surely form a topos with all the virtues that that entails such as in-

ternal logic, good exactness, function space of ‘dynamical systems’,

etc.” F. William Lawvere in [24].

In this thesis we will use the theory of synthetic differential geometry to

study the smooth spaces and functions that play a fundamental role in Lie

theory. This means that rather than working in the category Man that has as

its objects smooth finite dimensional paracompact Hausdorff manifolds (with

or without boundary) and as its arrows smooth functions we will instead use

a special type of topos called a well-adapted model of synthetic differential

geometry. Every well-adapted model E admits a full and faithful embedding

ι : Man ↪→ E and hence any results that only concern objects in the image

of this embedding correspond to results about classical manifolds. There are

several advantages of working in this enlarged category.

Firstly, in the category Man certain pullbacks do not exist. For example

this means that we are unable to give the structure of a manifold to any

algebraic set that has a singularity. In addition, although certain well behaved

colimits constructed using atlases do exist in Man there are many useful

colimits that do not exist. A simple example that we will use is the pushout

17



18 CHAPTER 1. SYNTHETIC DIFFERENTIAL GEOMETRY

I +1 0 I where I = [0, 1] ⊂ R is the unit interval. In any topos all limits and

colimits exist so we can we form all these objects in any well-adapted model.

Secondly for manifolds M and N the function space MN is rarely a finite

dimensional manifold but since every topos is cartesian closed all function

spaces exist in any well-adapted model.

Finally and most importantly, in any well-adapted model E of synthetic

differential geometry we can make rigorous the notions of infinitesimal object,

infinitesimal action and infinitesimal transformation. In particular there exists

an object D in E which is the representing object for tangent vectors (or 1-jets)

on a manifold. Intuitively we think of D as consisting of all points on the line

that square to zero:

D = {x ∈ R : x2 = 0}

where R = ι(R). In Man this would just be the terminal object 1 = {0} but

in E it is not terminal: in fact the fundamental Kock-Lawvere axiom satisfied

by every well-adapted model tells us that the map

R2 α−→ RD

defined by

α(a, b) = (d 7→ a+ bd)

is an isomorphism. More generally for any manifold M we have that (ιM)D =

ι(TM) and the projection

(ιM)D
ιM0

−−→ ιM

can be given the structure of a vector bundle internal to E . Furthermore

synthetic differential geometry allows us to rigorously define higher order

infinitesimal jets as well by using the representing objects

Dk = {x ∈ R : xk+1 = 0}

for k ∈ N>0 and arbitrary jets using the representing object

D∞ =
⋃
k>0

Dk

An arrow Dk → M will be called a k-jet in M and an arrow D∞ → M will

simply be called a jet in M .
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When we combine the existence of infinitesimal objects with the cartesian

closed structure on E we can rigorously identify the notions of vector field,

infinitesimal action and infinitesimal transformation that are often identified

heuristically in classical differential geometry. To do this let us start with a

section of the tangent bundle. That is to say an arrow

M
ξ̂−→MD

such that M0 ◦ ξ = 1M . Using the hom-tensor adjunction once we obtain an

arrow

D ×M ξ−→M

such that ξ(0,m) = m which is precisely the data of a pointed action of D on

M . Using the hom-tensor adjunction again gives an arrow

D
ξ̌−→MM

such that ξ̌(0) = 1M which we think of as a transformation infinitesimally close

to the identity transformation. This perspective on vector fields and hence

differential equations is treated in more detail in [20].

We will frequently use the internal logic of E when it is convenient to phrase

the theory in terms of variables and propositions rather than commutative

diagrams. In particular we will use the formulation of the internal logic for

Grothendieck toposes that is described in Section VI.7 of [23].

The price we must pay for this convenient category is embodied in the

following observation that is Lemma 1.1.1 in [14].

Lemma 1.0.1. In a Boolean topos, no non-trivial ring can satisfy the Kock-

Lawvere axiom.

It is also the content of Exercise 1.1 in Part I of [19]. This means that the

internal logic associated to any well-adapted model of synthetic differential

geometry is intuitionistic and we must reject any arguments that rely on the

principle of excluded middle. In particular, when working in the internal logic

of E the strategy of proof by contradiction is invalid and the axiom of choice

does not hold.
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1.1 Models of Synthetic Differential Geometry

In order to motivate our construction of well-adapted models of synthetic

differential geometry we recall some elementary concepts in classical algebraic

geometry. Recall that in algebraic geometry we use an ideal in a polynomial

ring

I / R[X1, X2, ..., Xn] = R[ ~X]

to carve out a subset of Rn that consists of the points in the zero set of every

f ∈ I:

Z(I) = {~x ∈ Rn : ∀f ∈ I. f(~x) = 0}

In the other direction, given a subset X ⊂ Rn we can obtain an ideal I / R[ ~X]

that is the set of all polynomials that vanish on X:

O(X) = {f ∈ R[ ~X] : ∀~x ∈ X. f(~x) = 0}

The correspondence between subsets and ideals is imperfect in two ways. Firstly

there are many subsets X ⊂ Rn that we cannot carve out using polynomial

equations. As an example consider the Cantor set in R. One simple way

of removing this problem is to restrict our interest to a certain class of well-

behaved sets: for example affine algebraic sets which are precisely the subsets

that arise as zero sets of ideals of polynomial rings. Secondly there are many

ideals that carve out the same subset. For example for each k ∈ N the ideals

(xk) carve out the subset {0} ⊂ R. Thus there is an algebraic formula (in this

case corresponding to nilpotency) that the geometry of algebraic sets does not

recognise. One important feature of the theory of sheaves and schemes is that

it redresses this imbalance. The construction of well-adapted models proceeds

in an analogous way to the above theory.

In synthetic differential geometry we are interested in not only the subsets

carved out by polynomials but also those carved out by arbitrary smooth

functionals. Therefore we replace the polynomial rings R[ ~X] with algebraic

structures called C∞-rings that have enough structure to account for all smooth

functions between Euclidean spaces. Now that we have enlarged the class of

functions that we are interested in there are even more formulae that we cannot

hope to distinguish between using the geometry of zero sets of smooth functions.
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For example the ideals (exp(−1/x2)) and (x) both carve out the subset {0} ⊂ R.

The extent to which we mitigate the imbalance between geometry and algebra

corresponds to the model of synthetic differential geometry that we choose to

use.

If we take our cue from the theory of schemes the natural way to construct a

model would be to start with the opposite category of the category of C∞-rings.

It turns out that there is a natural Grothendieck coverage (corresponding to

open inclusions of manifolds) that we can put on this category and hence we

can form a sheaf category (or Grothendieck topos) L. In L the imbalance

between geometry and algebra has been overcome because the objects of the

site are in bijection with ideals of C∞-rings. However in synthetic differential

geometry we are not only interested in generalising algebraic geometry but also

finding a nice category for the study of differential geometry. Therefore it is

important that the category that we work in has a full and faithful embedding

of the category Man of smooth paracompact Hausdorff manifolds inside it.

Unfortunately it turns out that L does not contain Man in a sufficiently nice

manner and hence when choosing our site we must restrict to some subcategory

of the opposite category of C∞-rings. In Section 1.4 we will pick out five

toposes that do contain a full and faithful embedding of Man. These different

models are sensitive to different types of infinitesimal and local behaviour:

the coarsest corresponds to taking zero sets as above and the most sensitive

uses finitely generated C∞-rings whose defining ideal is ‘germ determined’ as

recalled in Definition 1.1.8.

First we must define the opposite category of the category of finitely

generated C∞-rings. This category will be similar to the syntactic category of

the theory of C∞-rings except we will allow arbitrary conjunction instead of

finite conjunction when defining the objects. To construct a syntactic category

we would usually begin from a signature and then build up the terms and

formulae for a chosen fragment of logic. Then we would introduce a natural

deduction system to specify axioms of the theory and finally use an established

construction to form the syntactic category. However for the theory that we

are interested in we can give a direct description based on Section II.1 of [28].

We will write C∞(Rn,Rm) for the set of smooth functions Rn → Rm. For
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a subset I of C∞(Rn,R) we will write

(I) = {Σk
j=1rjφj : (rj ∈ C∞(Rn,R)) ∧ (φj ∈ I) ∧ (k ∈ N)}

for the ideal of C∞(Rn,R) generated by I.

Definition 1.1.1. The category of finitely generated affine C∞-schemes C has

as objects pairs [n, I] where n ∈ N and I is a subset of C∞(Rn,R). An arrow

[n, I]
φ−→ [m,J ]

of C is an equivalence class of smooth functions φ : Rn → Rm such that for

all f ∈ (J) the function fφ is in (I); φ is equivalent to φ′ iff componentwise

φi − φ′i ∈ (I) for i ∈ {1, ...,m}.

Remark 1.1.2. The identification of arrows in the last condition of Defini-

tion 1.1.1 tells us how mapping out of [n, I] is different from mapping out of

[n,−] where − denotes the empty set of functions. The following example

shows how many more arrows out of D = [1, x 7→ x2] there are than out of the

terminal object 1 = [0,−].

Lemma 1.1.3. Every arrow D = [1, x 7→ x2]→ R = [1,−] is equivalent to an

arrow R→ R of the form

x 7→ a+ bx

where a, b ∈ R.

Proof. Every f : D → R is an equivalence class of smooth functions f : R→ R.

By a double application of Hadamard’s Lemma we have:

f(x) = f(0) + xf ′(0) + x2f2(x)

for some smooth f2 : R→ R. If we let g denote the linear function defined by

x 7→ f(0) + xf ′(0) then we see that f − g = x2f2 and so since x2 is one of the

functions defining the domain we identify f and g.

Remark 1.1.4. If we modified the definition of the category of finitely gen-

erated affine C∞-schemes by only allowing finite subsets I when defining the

objects we would instead obtain the syntactic category of C∞-rings. This sub-

category of C can be thought of as the (opposite) category of finitely presented
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C∞-rings and will be written Cfp ⊂ C. This is one of the four categories from

which we will construct a well-adapted model of synthetic differential geometry.

For our coarsest site the underlying category will be the subcategory of

C consisting of all objects [n, I] which are determined by their ‘points’. This

corresponds to identifying all objects that carve out the same zero set. The site

will be useful to us when we relate synthetic differential geometry to classical

differential geometry but it will not itself give rise to a well-adapted model.

Definition 1.1.5. For a set of smooth functions I ⊂ C∞(Rn,R) we write

Z(I) = {x ∈ Rn : ∀f ∈ I. f(x) = 0}

Then an object [n, I] of C is point-determined iff

∀g ∈ C∞(Rn,R). (∀x ∈ Z(I). g(x) = 0) =⇒ g ∈ (I)

We will denote by Cpt ⊂ C the full subcategory of C on the objects that are

point-determined.

Notation 1.1.6. For every set of functions I ⊂ C∞(Rn,R) we can consider

the subobjects of [n, I] in C. We will write [n, I]pt for the largest such subobject

that is also an object of Cpt. In more concrete terms [n, I]pt = [n, J ] where J is

the subset of smooth functions in C∞(Rn,R) that vanish at all points of Z(I).

We will now pick out subcategories of C that will give rise to well-adapted

models of synthetic differential geometry. The definitions are the direct trans-

lation of those in Theorem 4.2 of Part I in [28] (note that this theorem is

listed as being in the fifth section of Part I on the contents page). The second

subcategory Cjet ⊂ C that we consider is sensitive enough that we have distinct

objects for ideals differing only by nilpotent elements.

Definition 1.1.7. For a smooth function f : Rn → R we write Tx(f) for the

Taylor series of f at x. We write P = R[[X1, ..., Xn]] for the ring of formal

power series in n indeterminates. For a set of smooth functions I ⊂ C∞(Rn,R)

we write

Tx(I) = {Σk
j=1rjTx(φj) : (rj ∈ P ) ∧ (φj ∈ I)}
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for the ideal of P generated by I. Then an object [n, I] is closed iff

∀g ∈ C∞(Rn,R). (∀x ∈ Z(I). Tx(g) ∈ Tx(I)) =⇒ g ∈ (I)

We will denote by Cjet ⊂ C the full subcategory on the objects that are closed.

We will write [n, I]jet for the largest subobject of [n, I] in C that is also an

object of Cjet. In more concrete terms [n, I]jet = [n, J ] where J is the subset

of smooth functions g in C∞(Rn,R) such that for all x ∈ Z(I) we have that

Tx(g) ∈ Tx(I).

Clearly we have that Cpt ⊂ Cjet. Geometrically a nilpotent of order k will

correspond to ‘infinitesimal jets’ of order k. To aid this visualisation we remark

that in C the intersection of the subobject [2, y − xk+1] of [2,−] corresponding

to a parabola with the subobject [2, y] of [2,−] representing the x-axis is the

object Dk = [1, xk+1] representing infinitesimal k-jets. In the subcategory Cpt
the object Dk does not exist and in fact [1, xk+1]pt = [1, I] ∼= [0,−] where I is

the set of all smooth functions vanishing at 0. However in Cjet if k and l are

distinct natural numbers then the objects [1, xk+1]jet and [1, xl+1]jet are not

isomorphic.

The next subcategory Cgerm ⊂ C that we consider is sensitive enough that

we have distinct objects for ideals that have the same points and jets but whose

germs are different.

Definition 1.1.8. For a smooth function f : Rn → R we write gx(f) for the

equivalence class of functions that is the germ of f at x ∈ Rn. Write Gx for

the ring of germs of smooth functions at x. For a set of smooth functions

I ⊂ C∞(Rn,R) we write

gx(I) = {Σk
j=1rjgx(φj) : (rj ∈ Gx) ∧ (φj ∈ I)}

for the set of finite linear combinations of germs of elements of I. Then an

object [n, I] is germ-determined iff

∀g ∈ C∞(Rn,R). (∀x ∈ Z(I). gx(g) ∈ gx(I)) =⇒ g ∈ (I)

We will denote by Cgerm ⊂ C the full subcategory on the objects that are

germ-determined. We will write [n, I]germ for the largest subobject of [n, I] in
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C that is also an object of Cgerm. In more concrete terms [n, I]germ = [n, J ]

where J is the subset of smooth functions g in C∞(Rn,R) such that for all

x ∈ Z(I) we have that gx(g) ∈ gx(I).

Clearly Cjet ⊂ Cgerm. To visualise the difference between Cjet and Cgerm
consider the following examples. Let f : R→ R be the smooth function defined

as

f(x) =

0 if x ≤ 0

exp(−1
x ) if x > 0

and let g : R→ R be

g(x) = exp(
−1

x2
)

Then the intersection of the subobjects [2, y − g(x)] and [2, y] of [2,−] in C is

[1, g(x)]. However [1, g(x)] does not exist in Cjet and in fact [1, g(x)]jet = [1, J ]

where J is the set of all smooth functions which vanish along with all their

derivatives at 0. Similarly the intersection of the subobjects [2, {y − f(x), y −
f(−x)}] and [2, y] of [2,−] in C is [1, {f(x), f(−x)}]. However in Cjet we

have [1, {f(x), f(−x)}]jet = [1, J ] again. By contrast in Cgerm the objects

[1, g(x)]germ and [2, {f(x), f(−x)}]germ are not isomorphic.

Finally we consider a subcategory of Cjet which recognises infinitesimal jets

but only if they are consistently distributed along the whole space.

Definition 1.1.9. A Weil presentation of degree n is a finite set W of polyno-

mials over R in indeterminates X1, ..., Xn such that for all i ∈ {1, ..., n} there

exists an integer ki ≥ 1 such that the polynomial Xki
i is in W . Let R be a

ring internal to some finitely complete category C. Then the R-Weil spectrum

DR
W carved out by the Weil presentation W is the object described by the

proposition

DR
W = {~x ∈ Rn : ∀f ∈W. f(~x) = 0}

in the internal logic of C.

Remark 1.1.10. A [1,−]-Weil spectrum in C is an object of the form [n,W ]

where W is a Weil presentation. For such spectra we drop the [1,−] and write

simply DW and Weil spectrum. We will write Spec(Weil) for the set of all

objects of C that are Weil spectra.
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Definition 1.1.11. The subcategory CW ⊂ C is the full subcategory on the

objects of the form

[m,J ]× [n,W ]

where J is the set of all functions vanishing on some embedded submanifold

M of Rm and W is a Weil presentation.

Remark 1.1.12. The set of smooth functions J = C∞(M,R) is point-

determined. For a spectrum of a Weil algebra [n, I] the set I is closed. Hence

CW ⊂ Cjet.

The next Theorem relates the subcategories Cfp and Cgerm. It is Theorem

6.3 in Part III of [19].

Theorem 1.1.13. Every finitely presented object of C is germ-determined.

We now put all of the categories in this section in a diagram that indicates

the various inclusions between them:

Cpt CW Cfp

Cjet Cgerm

It is a part of the larger diagram produced in Appendix 2 of [28] that includes

several other subcategories which we will not use in this thesis.

1.2 The Full and Faithful Embedding

We first describe the full and faithful embedding

ι : Man ↪→ Cpt

The following is Theorem 6.15 in [25].

Theorem 1.2.1. Every smooth n-dimensional manifold with or without bound-

ary admits a proper smooth embedding into R2n+1.

Remark 1.2.2. Since every proper map is closed we see that if ιM is a proper

smooth embedding of an m-dimensional manifold M into R2m+1 given by

Theorem 1.2.1 then im(ιM ) is closed.
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The following is Lemma 2.26 in [25].

Lemma 1.2.3. Suppose M is a smooth manifold with or without boundary,

A ⊂ M is a closed subset, and f : A → Rk is a smooth function. For any

open set U containing A, there exists a smooth function f : M → Rk such that

f |A = f and supp(f) ⊂ U .

With these strong results at our disposal we can define the embedding of

Man into the category of point-determined objects.

Definition 1.2.4. For every manifold M in Man use Theorem 1.2.1 to choose

a proper smooth embedding ιM of M into R2m+1 where m is the dimension

of M . Let φ : M → N be a smooth function between manifolds M and N of

dimensions m and n respectively. Then we define

Man
ι−→ Cpt

to be the functor that takes φ to the arrow

[2m+ 1, IιM ]
ιNφ−−→ [2n+ 1, IιN ]

where IιM and IιN are the sets of all smooth functions that vanish on the image

of ιM . We have written ιNφ for the lift of ιNφ along ιM given by Lemma 1.2.3.

To see that ι respects composition we use the fact that IιM and IιM are

point-determined. By the definition of arrows in C two smooth functions

φ, ψ : R2m+1 → R2n+1 that factor through ιN define the same arrow from

[2m+1, IM ] to [2n+1, IN ] in C iff for all i ∈ {1, ..., 2n+1} we have (φ−ψ)i ∈ IM .

But by construction of IM this is the same as the condition φιM = ψιM . Now

let

A
f−→ B

g−→ C

be smooth functions in Man. Then the equalities

ιCgιBfιA = ιCgιBf = ιCgf = ιCgfιA

imply that ιCgιBf = ιCgf as required.

Lemma 1.2.5. Let ιM , ι
′
M : M ↪→ R2m+1 be two proper smooth embeddings of

a manifold M of dimension m. Then [2m+ 1, IιM ] ∼= [2m+ 1, Iι′m ] in C.
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Proof. Let

ιM : [2m+ 1, Iι′M ]→ [2m+ 1, IιM ]

be the lift of ιM along ι′M and

ι′M : [2m+ 1, IιM ]→ [2m+ 1, Iι′M ]

the lift of ι′M along ιM . These two arrows are inverses in C. Indeed

ιM ι′M ιM = ιM ι
′
M = ιM

and

ι′M ιM ι
′
M = ι′M ιM = ι′M

hence ιM ι′M = 1[2m+1,IιM ] and ι′M ιM = 1[2m+1,Iι′
M

] as required.

Proposition 1.2.6. The functor ι : Man→ Cpt is full and faithful.

Proof. To show that ι is full let M and N be smooth manifolds and

[2m+ 1, IιM ]
a−→ [2n+ 1, IιN ]

be an arrow in Cpt. Let α, α′ : R2m+1 → R2n+1 be in the equivalence class

a. Since a has domain [2m + 1, IιM ] we have that αιM = α′ιM . Since a has

codomain [2n + 1, IιN ] we have that αιM factors through ιN as ιNa = αιM .

This a is unique because ιN is a monomorphism. Now ι(a) = ιNa where ιNa is

the lift of ιNa along ιM . Hence

ι(a)ιM = ιNa = αιM

and so ι(a) = a as required.

To show that ι is faithful let f, g : M → N be smooth functions in Man

such that ι(f) = ι(g). Then lifting along ιM tell us that ιNf = ιNg whence

ιNf = ιNfιM = ιNgιM = ιNg

and since ιN is a monomorphism we have that f = g as required.

Now that we have shown that the category Man embeds into the opposite

category of point-determined C∞-rings we immediately deduce that Man

embeds into the categories CW , Cjet, Cfp, Cgerm and C also. The next step will
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be to put the structure of a coverage J on all these subcategories of C for

which the covering families are a mild generalisation of arbitrary open covers

in Man. We will see that all of the resulting sites are subcanonical except for

(C,J ) itself and so we can embed them into the resulting sheaf toposes Ept,
EW , Ejet, Efp and Egerm. It turns out that Ept isn’t fine enough to properly

model infinitesimal objects but the other sheaf toposes will be the well-adapted

models for synthetic differential geometry that we use in this thesis.

Definition 1.2.7. The open subset Uχ → [n, I] defined by the smooth function

χ : Rn → R is the subobject:[
n+ 1, I ∪ {χ · xn+1 − 1}

] proj−−→ [n, I]

which intuitively speaking represents the intersection of the zero set determined

by I with the open subset χ−1(R− {0}) .

Remark 1.2.8. If [n, I] is either point-determined, jet-determined, finitely

presented or germ-determined then Uχ is point-determined, jet-determined,

finitely presented or germ-determined respectively.

Definition 1.2.9. The Dubuc coverage J on the category C consists of all

families of open subsets {ιi : Uχi → [n, I]}i such that every global element

1→ [n, I] factors through one of the ιi.

Definition 1.2.10. Using the obvious restrictions we obtain sites

(CW ,JW ), (Cjet,Jjet), (Cfp,Jfp) and (Cgerm,Jgerm)

The well-adapted model of synthetic differential geometry Egerm is the sheaf

topos

Egerm ∼= Sh(Cgerm,Jgerm)

constructed from the site (Cgerm,Jgerm). Similarly for EW , Ejet and Efp. The

topos EW will be called the Cahiers topos and the topos Egerm will be called

the Dubuc topos. In the sequel we will use the term ‘smooth topos’ to refer to

an arbitrary well-adapted model.

Theorem 1.2.11. The sites

(CW ,JW ), (Cjet,Jjet), Cfp,Jfp) and (Cgerm,Jgerm)

are subcanonical.
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Proof. For (CW ,JW ) we refer to [10]. For (Cjet,Jjet) we refer to Lemma 2.2

in Chapter III of [28]. For (Cfp,Jfp) we refer to Corollary 3.2.22 in [35]. For

(Cgerm,Jgerm) we refer to either Lemma 1.3 in Chapter III of [28] or Theorem

7.4 in Part III of [19].

Corollary 1.2.12. There is a full and faithful embedding ι : Man→ E where

E is any of the toposes EW , Ejet, Efp and Egerm.

Proof. Follows immediately from Proposition 1.2.6 and Theorem 1.2.11.

Remark 1.2.13. In Definition 1.2.9 we used arbitrary families of open sets. If

instead we use the coverage I that consists of all finite families of open subsets

{ιi : Uχi → [n, I]}i in C such that every global element 1 → [n, I] factors

through one of the ιi then (C, I) is actually subcanonical and the associated

sheaf category has a full and faithful embedding of Man inside it. However

arbitrary open covers are considered important enough that the definition of

well-adapted model rules out this site.

1.3 The Kock-Lawvere Axiom

Recall that by Lemma 1.1.3 arrows [1, x2]→ [1,−] in C are in bijection with

linear functions R → R of the form x 7→ a + bx for some a, b ∈ R. The

Kock-Lawvere axiom generalises this property.

Definition 1.3.1. Let W be a Weil presentation. We define AR
W to be the

R-algebra

R[X1, .., Xn]/(W )

where (W ) denotes the ideal of R[X1, ..., Xn] generated by W . Given a ring

R in a topos E , the Weil algebra ARW with presentation W is the internal

R-algebra

R[X1, ...Xn]/(W ).

Example 1.3.2. If n = 1 and W = {X2} then AR
W is the ring of dual numbers

R[X]/(X2) and ARW is its internal counterpart.
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Example 1.3.3. If n = 2 and W = {X2
1 , X

3
2 , X1X

2
2} then AR

W consists of all

polynomials of the form

a00 + a10X1 + a01X2 + a11X1X2 + a02X
2
2

with multiplication defined as usual subject to the relations imposed by W .

Let W be a Weil presentation and DR
W be the R-Weil spectrum carved out

by W as in Definition 1.1.9. Now in the pointwise R-algebra RD
R
W the elements

pi corresponding to

DR
W ↪→ Rn

πi−→ R

satisfy the relations in W for i ∈ {1, ..., n} and so induce an R-algebra map

ARW = R[X1, ..., Xn]/(W )
α−→ RD

R
W

that sends Xi to pi.

Example 1.3.4. If n = 2 and W = {X2
1 , X

3
2 , X1X

2
2} then α is the R-algebra

homomorphism defined by

(a00, a10, a01, a11, a02) 7→
(
(d1, d2) 7→ a00 + a10d1 + a01d2 + a11d1d2 + a02d

2
2

)
.

Axiom 1.3.5. The topos E satisfies the Kock-Lawvere axiom with respect to

an internal ring R iff for every Weil presentation W the internal R-algebra

homomorphism

ARW
α−→ RD

R
W

defined above is an isomorphism.

Proposition 1.3.6. The toposes EW , Ejet, Efp and Egerm satisfy the Kock-

Lawvere axiom with respect to the internal ring ι(R).

Proof. It will suffice to prove the result for the largest topos Egerm and for this

proof we refer to Theorem 8.4 in Part III of [19].

An important property of spectra of Weil algebras is that they are ‘atomic’

objects of the topos. In short this says that they are small enough to only fit

in one summand of any structure that we construct by glueing together other

smaller structures. The next definition makes this idea precise.
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Definition 1.3.7. An object X in a category E is atomic iff the endofunctor

E (−)X−−−→ E

defined using the internal hom has a right adjoint.

Proposition 1.3.8. The object D is atomic for all D ∈ Spec(Weil) in any

of the toposes EW , Ejet, Efp and Egerm.

Proof. This follows from the Example in Appendix 4 of [28].

1.4 Well-adapted Models

Recall that the pullback which defines the intersection of the two embedded

submanifolds {(x, y) : y = x2} and {(x, 0)} of R2 does exist in Man and

is isomorphic to the terminal object. For our purposes we would like the

intersection to be calculated in a similar way to the intersection number of

these two algebraic sets: that is we would like to include not only the points

that the two sets share but also the jets that they share. In this case both

{(x, y) : y = x2} and {(x, y) : y = 0} also have a 1-jet in common and hence

we insist that the intersection in C is [1, x2]. However sometimes when we

calculate the intersection of two algebraic sets in Man it turns out to be the

correct one. This is clearly the case when the two algebraic sets share no jets of

any order. We generalise this idea slightly by recalling the following definition

which is Definition 3.1 in Part III of [19].

Definition 1.4.1. A pair of maps fi : Mi → N (i = 1, 2) in Man with

common codomain are said to be transversal to each other if for each pair of

points x1 ∈M1, x2 ∈M2 with f1(x1) = f2(x2) (= y say), the images of (dfi)xi

(i = 1, 2) jointly span TyN as a vector space.

Now we are in a position to define what it means for a topos to be a

well-adapted model of synthetic differential geometry.

Definition 1.4.2. A well-adapted model of synthetic differential geometry is

a topos equipped with a full embedding ι : Man→ E satisfying the following

conditions. The functor ι preserves pullbacks of transversal pairs, preserves the
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terminal object and sends arbitrary open covers in Man to jointly epimorphic

families in E . We further insist that the topos E satisfies the Kock-Lawvere

axiom with respect to the internal ring ι(R) and that all ι(R)-Weil spectra are

atomic.

Proposition 1.4.3. The toposes EW , Ejet, Efp and Egerm are well-adapted

models for synthetic differential geometry.

Proof. Let E• denote any of EW , Ejet, Efp and Egerm; let C• denote the corre-

sponding site of definition. The existence of ι is Corollary 1.2.12. Since the

Yoneda embedding y : C• → E• preserves all limits, to show that ι preserves

transversal pullbacks it will suffice to show that the full embedding Man→ C•
preserves transversal pullbacks. Since C• is a full subcategory of the category C
of Definition 1.1.1 it will suffice to show that the embedding Man→ C preserves

transversal pullbacks. This is Proposition 2.1 of Chapter II in [28]. It is clear

that ι preserves the terminal object for all these toposes. Since open covers

in Man map to covers in the Dubuc coverage in Cop they map to epimorphic

families in E . Finally E satisfies the Kock-Lawvere axiom with respect to ι(R)

by Proposition1.3.6 and ι(R)-Weil spectra are atomic by Proposition 1.3.8.

In [14] the notion of well-adapted category is defined in Definition 1.3.20.

Then in Theorem 1.3.27 it is shown that the sheaf topos generated by any

well-adapted category with the Dubuc coverage is a well-adapted topos. Since

all the sites

(CW ,JW ), (Cjet,Jjet), Cfp,Jfp) and (Cgerm,Jgerm)

are examples of well-adapted categories this means that Proposition 1.4.3

follows from this more general theory.





Chapter 2

Factorisation Systems

2.1 Generalities on Factorisation Systems

This section will recall some of the basic theory of orthogonal and weak

factorisation systems in ordinary category theory as well as the theory of

enriched orthogonal factorisation systems. We will first observe how to modify

certain results about ordinary weak factorisation systems to obtain results

about ordinary orthogonal factorisation systems and then how to modify

results about ordinary orthogonal factorisation systems to obtain results about

enriched orthogonal factorisation systems. Our goal will be to obtain two

different methods that generate an enriched factorisation system in a topos E
from a given class of arrows in E . The first method will construct a factorisation

system such that the right class is contained in the class of monomorphisms

of E and the crucial construction involved will be a categorical limit. This

method will be used to define the jet factorisation system in a well-adapted

model in Section 2.2.1. The second method will use a transfinite construction

called the small object argument which mostly utilises categorical colimits.

This method will be used to define the integral factorisation system in the

category of categories internal to a well-adapted model in Section 2.3.3.

2.1.1 Ordinary Factorisation Systems

First we will recall the elementary theory of ordinary orthogonal and weak

factorisation systems. We will then see how to relate orthogonal and weak

35
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factorisation systems via the codiagonal construction. The final result of

this comparison will be recorded as Corollary 2.1.21 which will be used in

Section 2.1.2 to generate a factorisation system from a class of arrows that

we want to be contained in the left class. The presentation of this established

theory mainly uses [3] although the actual definitions of strong and weak

orthogonality have been phrased in terms of hom-objects as in [8].

In this section l : A→ B and r : X → Y will denote arrows in a category

E . The capital letters L and R will denote classes of arrows in E . In the sequel

the category E will either be a topos or a category of categories or groupoids

in a topos. However we will initially develop the theory in more generality and

impose extra conditions as we need them.

Definition 2.1.1. The arrow l is left orthogonal to r (written l ⊥ r) iff

E(B,X) E(A,X)

E(B, Y ) E(A, Y )

E(l,X)

E(B,r) E(A,r)

E(l,Y )

is a pullback in Set.

Remark 2.1.2. To say that l ⊥ r is equivalent to saying that for all commu-

tative squares

A X

B Y

l

φ

r

ξ

ψ

there exists an unique filler ψ.

Definition 2.1.3. Let S be a class of arrows in a category E . Then the right

orthogonal complement of S is the class

S⊥ := {f ∈ E2 : ∀s ∈ S. s⊥f}

and the left orthogonal complement is the class:

S⊥ := {f ∈ E2 : ∀s ∈ S. f⊥s}

Remark 2.1.4. It is immediate from the definition of orthogonality that X⊥

is closed under limits in E2 and X⊥ is closed under colimits in E2. In addition
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both classes are easily seen to be closed under composition, taking retracts

and to contain the isomorphisms.

Definition 2.1.5. The pair (L,R) is a (orthogonal) prefactorisation system

on E iff L⊥ = R and L = R⊥ .

Definition 2.1.6. The pair (L,R) is a (orthogonal) factorisation system on E
iff (L,R) is a prefactorisation system and (L,R)-factorisations exist: i.e. for

every f ∈ E2 there exist l ∈ L, r ∈ R such that f = r ◦ l.

Definition 2.1.7. A replete class S of arrows in E is one which satisfies the

following condition: if s ∈ S, the arrows α and β are isomorphisms in E and

the square

A B

C D

s

α

t

β

commutes then the arrow t ∈ S also.

Remark 2.1.8. The classes S⊥ and S⊥ are replete for any class S of arrows

in E .

The following Lemma provides sufficient conditions for a pair (L,R) to be

a factorisation system that are often easier to check than the conditions in

Definition 2.1.6.

Lemma 2.1.9. The pair (L,R) is a factorisation system iff

1. the classes L and R are replete,

2. if l ∈ L and r ∈ R then l ⊥ r,

3. for every map f in E, there exist fr ∈ R and fl ∈ L such that f = frfl.

Proof. It is immediate that all factorisation systems satisfy conditions 1–3 so it

will suffice to show that conditions 1–3 imply that L = R⊥ (then the equality

L⊥ = R follows by duality). Now condition 2 is equivalent to the inclusion

L ⊂ R⊥ and therefore it will suffice to show that L ⊃ R⊥ . So let f ∈ R⊥ and

consider the commutative diagram

A A I

I B B

fl

1A

f

fl

fr

fr

m

1B
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where f = frfl is the (L,R)-factorisation given by condition 3. By hypothesis

there is a unique filler m for the right hand square. But by condition 2 the filler

1I for the whole rectangle is the unique such filler. Hence m is an isomorphism

with inverse fr and by condition 1 we have that f ∈ L as required.

Remark 2.1.10. Condition 2 is equivalent to either L⊥ ⊃ R or L ⊂ R⊥ .

Definition 2.1.11. The object Sq(l, r) of squares between l and r is defined

by the pullback

Sq(l, r) E(A,X)

E(B, Y ) E(A, Y )

E(A,r)

E(l,Y )

in Set.

Remark 2.1.12. The set Sq(l, r) is equivalently described as the set of all

pairs of arrows (φ, ξ) such that the square

A X

B Y

l

φ

r

ξ

commutes.

Definition 2.1.13. The arrow l is weakly left orthogonal to r (written l t r)

iff the arrow p : E(B,X)→ Sq(l, r) induced by the pair (E(B, r), E(l,X)) is a

split epimorphism.

Remark 2.1.14. If l t r then for all commutative squares:

A X

B Y

l

φ

r

ψ

ξ

there exists a (not necessarily unique) filler ξ. The converse holds if we assume

the axiom of choice because under this assumption every epimorphism in Set

is split.
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Definition 2.1.15. Let S be a class of arrows in a category E . Then the right

weakly orthogonal complement of S is the class

St := {f ∈ E2 : ∀s ∈ S. s t f}

and the left weakly orthogonal complement is the class:

St := {f ∈ E2 : ∀s ∈ S. f t s}

Next, we prove some results that relate strong and weak orthogonality.

Suppose from now on that E has all pushouts.

Definition 2.1.16. The codiagonal δo(l) of l is the arrow B +l lB → B induced

by the pair (1B, 1B):

A B

B B +l l B

B

l

l 1B
ι2

1B

ι1

δo(l)

If Σ is a class of arrows in E then we write δo(Σ) = {δo(l) : l ∈ Σ}.

The following Lemma follows immediately from the universal property of

B +l l B.

Lemma 2.1.17. An arrow (ξ1, ξ2) : B +l l B → X has a lift

B +l l B X

B

δo(l)

(ξ1,ξ2)

ξ

along δo(l) iff ξ1 = ξ2, in which case ξ = ξ1 = ξ2.

Lemma 2.1.18. The square

B +l l B X

B Y

δo(l)

(ξ1,ξ2)

r

ψ

(2.1)
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commutes iff the following diagram is serially commutative:

A X

B Y

l

(ξ1,ξ2)◦ι1◦l

r

ψ

ξ2

ξ1 (2.2)

Proof. The universal property of B +l l B tells us that the commutativity of

(2.1) is equivalent to the equation (ψ,ψ) = (r ◦ ξ1, r ◦ ξ2) which is in turn

equivalent to the bottom triangles of (2.2) commuting. The top triangles of

(2.2) commute tautologically.

Proposition 2.1.19. l⊥r ⇐⇒ (l t r) ∧ (δo(l) t r)

Proof. =⇒ : Suppose (2.1) commutes. Then by Lemma 2.1.18 we have that

(2.2) is serially commutative. But by the hypothesis that l ⊥ r we obtain that

ξ1 = ξ = ξ2 and so by Lemma 2.1.17 we see that (2.1) is filled by ξ. Note

that rξ = ψ because (2.2) is serially commutative. ⇐= : Suppose that (2.2) is

serially commutative. Then by Lemma 2.1.18 we have that (2.1) commutes.

Now by the hypothesis δo(l) t r (2.1) has a filler so by Lemma 2.1.17 we have

that ξ1 = ξ = ξ2.

Corollary 2.1.20. If l⊥r then δo(l)⊥r.

Proof. By Lemma 2.1.19 we have that l ⊥ r =⇒ δo t r. Now it remains to

show that fillers of (2.1) must be unique. But this is clear because δo(l) is a

(split) epimorphism.

Corollary 2.1.21. If Σ is a class of arrows in E then Σ ∪ δo(Σ) ⊂ (Σ⊥)⊥ .

Lemma 2.1.22. Let (LC , RC) and (LD, RD) be factorisation systems on cate-

gories C and D respectively. Let

C D
F

⊥

U

be an adjunction. Then for all arrows l in C and ρ in D we have that

Fl ⊥ ρ ⇐⇒ l ⊥ Uρ
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Proof. First we see that l ⊥ Uρ iff the square

UXB UXA

UY B UY A

UρB

UXl

UρA

UY l

is a pullback in Set. Since F a U this is equivalent to

XFB XFA

Y FB Y FA

ρFB

XFl

ρFA

Y Fl

being a pullback in Set. But this is precisely the statement that Fl ⊥ ρ.

2.1.2 Generating Ordinary Factorisation Systems

Now we describe two methods for generating ordinary factorisation systems

from a class of arrows. The fundamental constructions will be carried out in

the unenriched setting and then in the next section we will prove a ‘bootstrap-

ping’ Lemma that enables us to obtain two enriched factorisation systems as

corollaries of the constructions in this section.

The first method generates a factorisation system for which the right class

is contained in the class of monomorphisms of E . This will allow us to construct

the factorisation using a limit (in particular an intersection). The following

Proposition gives sufficient conditions on E and a set of arrows R in E for us

to generate a factorisation system on E that has right class R. It is Lemma 3.1

of [6] where a sketch of the proof is given. Our treatment follows Proposition

7.1 in [27] where a full proof is given.

Proposition 2.1.23. Let R be a class of arrows in a category E. Suppose that

R is contained in the class of monomorphisms, is closed under composition

and contains all the isomorphisms. Suppose that the pullback of an arrow in R

along an arbitrary arrow in E exists in E and is again in R. Suppose further

that all intersections of arrows in R exist in E and are again in R. Then

( R⊥ , R) is a factorisation system on E.

Proof. We will check the conditions of Lemma 2.1.9. To show that ( R⊥ , R)-

factorisations exist let f : M → N be an arrow in E that we want to factorise.
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Consider the diagram D : I → E/N where I is the full subcategory of E/N on

all arrows in R with codomain N that f factors through. Let r1 : I � N be

the limit of this diagram (i.e. the intersection) and l1 : M → I be the induced

factorisation of f through the limit. We will show that for all r2 ∈ R we have

l1 ⊥ r and hence l1 ∈ R⊥ . So let φ and ψ be arrows in E such that the square

MIY X in the diagram

M

P X

I Y

N

∀φ

l1

f

x

r3 r2

∀ψ

r1

commutes and let r3 be the pullback of r2 along ψ. We need to show that

the square MIY X has a diagonal lift. Since R is closed under pullback and

composition we have that r1 ◦ r3 is an arrow in R that f factors through.

Therefore r3 is an isomorphism because I was defined as the intersection of

all such arrows. So now x ◦ r−1
3 is the required lift which is the unique lift

because r2 is a monomorphism. It is immediate that the other conditions of

Lemma 2.1.9 are satisfied.

The second method uses a standard transfinite construction called the small

object argument to generate a factorisation system. This method is carried

out in the following Proposition 2.1.28 which gives sufficient conditions on E
and a set of arrows L in E that allow us to generate a factorisation system on

E that has left class containing (but not necessarily equal to) L. It is Theorem

4.1 in [3] and in our proof we also refer to the treatment of the small object

argument in Section 4.5 of that paper.

Notation 2.1.24. Let α be a non-zero ordinal. Then we write [α] for the

poset of all ordinals smaller than α and 0 for the initial object of [α]. Let Σ

be a class of arrows in a category E . Then a transfinite string of composable

arrows in Σ is a functor

[α]
D−→ E
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that preserves colimits such that for all β + 1 < α the natural map

D(β)→ D(β + 1)

is in Σ. We say that Σ is closed under transfinite composition iff for every D

that is a transfinite string of composable arrows in Σ such that the colimit

colimβ<αD(β) exists in E the induced map

D(0)
ν−→ colimβ<αD(β)

is also in Σ.

Definition 2.1.25. A class of arrows Σ in a category E is closed under cobase

change iff for all σ ∈ Σ and all pushout squares

A C

B D

σ

f

u1

u2

the arrow u1 ∈ Σ also.

Definition 2.1.26. Let Σ be a class of arrows in a category E . Then Sat(Σ)

is the closure of this class under:

1. adding isomorphisms,

2. transfinite composition,

3. cobase change,

4. retracts.

We say that a class of arrows Σ is saturated iff Sat(Σ) = Σ.

Lemma 2.1.27. The class of arrows R⊥ is saturated for any R.

Proof. It is clear that R⊥ contains all the isomorphisms in E and that it is stable

under cobase change. To see that it is closed under transfinite composition let

r ∈ R, let the functor D be a transfinite string of composable arrows in R⊥

and let φ and ξ be arrows in E making the outer square of

D(0) C

colimβ<αD(β) E

ν

φ

rψα

ξ
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commute. For β < α we define the arrows ψβ : D(β) → C by transfinite

induction. For the base case we set ψ0 = φ. For successor ordinals we define

ψβ+1 as the unique filler of the square

D(β) C

D(β + 1) E

ψβ

rψβ+1

ξι

where ι is the natural inclusion into colimγ<αD(γ) and for limit ordinals β we

define ψβ as the unique map

colimγ<βD(γ) = D(β)
ψβ−−→ C

so that

D(δ)
ιδ−→ colimγ<βD(γ)

ψβ−−→ C = ψδ

for all δ < β. Hence the ψα that we require is colimβ<αD(β).

To see that R⊥ is closed under retract suppose that g ∈ R⊥ and the square

A C A

B D B

f

m1

g

r1

f

m2 r2

commutes where r1m1 = 1A and r2m2 = 1B. Further let φ and ξ make the

square

A X

B Y

φ

f r

ξ

commute. Then there exists an unique ψ1 : D → X such that ψ1g = φr1

and rψ1 = ξr2. But then the lift that we require is ψ1m2. Indeed rψ1m2 =

ξr2m2 = ξ and ψ1m2f = ψ1gm1 = φr1m1 = φ as required.

Proposition 2.1.28. Let Σ be a set of arrows in a locally presentable category

E. Then

(L,R) = (Sat(Σ ∪ δo(Σ)),Σ⊥)

is a factorisation system on E.
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Proof. We check that the conditions of Lemma 2.1.9 hold. It is immediate that

both Sat(Σ ∪ δo(Σ)) and Σ⊥ are replete. To show that (L,R)-factorisations

exist we refer to Section 4.5 of [3]. Thus it remains to check that

Sat(Σ ∪ δo(Σ))⊥ ⊃ Σ⊥

Now Corollary 2.1.21 tells us that

Σ ∪ δo(Σ) ⊂ (Σ⊥)⊥

and so

Sat(Σ ∪ δo(Σ)) ⊂ (Σ⊥)⊥

because (Σ⊥)⊥ is saturated. Therefore

Sat(Σ ∪ δo(Σ))⊥ ⊃ (Σ⊥)⊥ ⊥ = Σ⊥

as required.

2.1.3 Enriched Factorisation Systems

We begin by recalling the theory of enriched (orthogonal) factorisation systems.

Then we show how to relate enriched and ordinary factorisation systems using

the operation of closure under (co)tensor. Once this relation is established

we can immediately generalise Propositions 2.1.23 and 2.1.28 to obtain two

methods of generating an enriched factorisation system from a class of arrows.

They will be used to construct the jet factorisation system in Section 2.2.1 and

the integral factorisation system in Section 2.3.3 respectively.

Since we followed [8] by defining the orthogonality of arrows in an ordinary

category in terms of hom-objects it is now straightforward to give the general

definition of enriched orthogonality and hence enriched factorisation system.

We will work analogously to the treatment of weak enriched factorisation

systems in [31] but will mainly make use of the account of (orthogonal) enriched

factorisation systems that is [27]. We refer to [17] for the basic concepts of

enriched category theory.

In this section l : A→ B and r : X → Y will be arrows in the underlying

category E0 of a V-category E . The capital letters L and R will denote classes

of arrows in E . In the sequel we will take V to be a smooth topos and E will
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be equal to one of the categories Gpd(V), Cat(V) or V itself. However for the

moment we will only impose extra conditions on E and V as we require them.

Definition 2.1.29. The arrow l is left V-orthogonal to r (written l⊥Vr) iff

E(B,X) E(A,X)

E(B, Y ) E(A, Y )

E(l,X)

E(B,r) E(A,r)

E(l,Y )

is a pullback in V.

Definition 2.1.30. Let S be a class of arrows in E0. Then the right V-

orthogonal complement of S is the class:

S⊥V := {f ∈ E20 : ∀s ∈ S. s⊥Vf}

and the left V-orthogonal complement of S is the class:

S⊥V := {f ∈ E20 : ∀s ∈ S. f⊥Vs}

Definition 2.1.31. The pair (L,R) is a V-prefactorisation system on E iff

L⊥V = R and L = R⊥V .

Definition 2.1.32. The pair (L,R) is a V-factorisation system on E iff (L,R)

is a prefactorisation system and (L,R)-factorisations exist: i.e. for every f ∈ E20
there exist l ∈ L, r ∈ R such that f = r ◦ l.

Definition 2.1.33. Let v be an object of V and X an object of E . Then the

cotensor Xv is an object of E for which there is an isomorphism

E(A,Xv) ∼= V(v, E(A,X))

in V that is natural in A. For f : X → Y in E then the cotensor

Xv fv−→ Y v

of the arrow f by v is the arrow induced by V(v, E(A, f)) using the Yoneda

Lemma. Dually the tensor v⊗X of X with v is an object of E for which there

is an isomorphism

E(v ⊗X,B) ∼= V(v, E(X,B))
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in V that is natural in B. For f : X → Y in E then the tensor

v ⊗X v⊗f−−→ v ⊗ Y

of the arrow f by v is the arrow induced by V(v, E(f,B)) using the Yoneda

Lemma.

The following Lemma is Proposition 5.4 in [27].

Lemma 2.1.34. Let l : A→ B and r : X → Y be arrows in E such that the

cotensor rv exists for all v ∈ V. Then we have that

(∀v ∈ V. l ⊥ rv) ⇐⇒ l ⊥V r

Proof. The statement (∀v ∈ V. l ⊥ rv) is equivalent to the statement that

E(B,Xv) E(A,Xv)

E(B, Y v) E(A, Y v)

E(B,rv)

E(l,Xv)

E(A,rv)

E(l,Y v)

is a pullback in Set for all v ∈ V. By definition of cotensor this is equivalent

to the following square being a pullback in Set:

V(v, E(B,X)) V(v, E(A,X))

V(v, E(B, Y )) V(v, E(A, Y ))

V(v,E(B,r))

V(v,E(l,X))

V(v,E(A,r))

V(vE(l,Y ))

for all v ∈ V. By the Yoneda Lemma this is equivalent to the square:

E(B,X) E(A,X)

E(B, Y ) E(A, Y )

E(B,r)

E(l,X)

E(A,r)

E(l,Y )

being a pullback in V which is the definition of l ⊥V r.

Corollary 2.1.35. Suppose that for all v ∈ V and all arrows r ∈ R the

cotensor rv exists. Let R̄ be the closure of R under cotensor with arbitrary

objects of V (i.e. R̄ is the smallest class containing R such that for all x ∈ R̄
and v ∈ V the arrow xv is also in R̄) . Then R⊥V = R̄⊥ .
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Definition 2.1.36. An arrow m in E0 is a V-monomorphism iff for all A ∈ E
the arrow E(A,m) : E(A,M)→ E(A,N) is a monomorphism in V. An arrow

f in E0 is a strong V-epimorphism iff f⊥Vm for all V-monomorphisms m in E .

Remark 2.1.37. Let M be the class of V-monomorphisms in a V-category E
that has all coproducts. Then M = Q⊥V where Q is the set of all fold maps

∇ : A+A→ A for A ∈ E .

Corollary 2.1.38. Let Λ be a class of arrows in the underlying category E0

of a V-category E which has all tensors, cotensors and coproducts. Let M be

the V-monomorphisms in E and suppose that all intersections of arrows in M
exist in E. Then

(L,R) = ( (Λ⊥V ∩M)⊥V ,Λ⊥V ∩M)

is a V-factorisation system on E.

Proof. We first show that (L,R) is a V-prefactorisation system. Since

Λ⊥V ∩M = Λ⊥V ∩Q⊥V = (Λ ∪Q)⊥V

it follows that

( R⊥V )⊥V = R

as required. The existence of (L,R)-factorisations follows immediately from the

fact that R is closed under cotensors (and so R⊥ = R⊥V ) and Proposition 2.1.23.

Example 2.1.39. Suppose that in the category E all intersections of V-

monomorphisms exist. Then the pair

(StEpi,Mono) = ( M⊥V ,M)

is an enriched factorisation system in E . When E is a topos all epimorphisms

are strong (and conversely in all categories) so we will write simply (Epi,Mono)

for this factorisation system.

Now we extend Lemma 2.1.28 to the enriched setting.
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Corollary 2.1.40. Let Σ be a class of arrows in the underlying category E0 of

a V-category E which has all tensors and cotensors. Suppose that the ordinary

category E0 is locally presentable. Let Σ̃ be the closure of Σ under tensor. Then

(L,R) = (Sat(Σ̃ ∪ δo(Σ̃)),Σ⊥V )

is a V-factorisation system on E.

Proof. First we show that (L,R) is a V-prefactorisation system. Firstly we

notice that

Sat(Σ̃ ∪ δoΣ̃) = (Σ̃⊥)⊥ = (Σ⊥V )⊥ = (Σ⊥V )⊥V (2.3)

where the first equality follows from Lemma 2.1.28 the second equality from

the dual of Corollary 2.1.35 and the third equality from the fact that Σ⊥V is

closed under cotensor. Now applying (−)⊥V to both sides of (2.3) gives us that

Sat(Σ̃ ∪ δoΣ̃)⊥V = Σ⊥V

as required. The existence of (L,R)-factorisations follows immediately from

the equality Σ⊥V = Σ̃⊥ and Lemma 2.1.28.

Lemma 2.1.41. Let (LC , RC) and (LD, RD) be V-factorisation systems on

V-categories C and D respectively which have all tensors and cotensors. Let

C D
F

⊥

U

be an adjunction such that for all ρ : X → Y in RD the arrow Uρ ∈ RC. Then

for all l : A→ B in LC the arrow Fl ∈ LD.

Proof. Since (LD, RD) is a V-factorisation system we have that

LD = R⊥V D

and in addition that ρv ∈ RD for all v ∈ V and ρ ∈ RD. Hence by hypothesis

U(ρv) ∈ RC and l ⊥V U(ρv) for all v ∈ V and ρ ∈ RD. In particular we have

that l ⊥ U(ρv) for all v ∈ V and ρ ∈ RD. But by Lemma 2.1.22 we have that

∀v ∈ V. ∀ρ ∈ RD. l ⊥ U(ρv) ⇐⇒ Fl ⊥ ρv

and Lemma 2.1.34 tells us that:

∀ρ ∈ RD. (∀v ∈ V. F l ⊥ ρv) ⇐⇒ Fl ⊥V ρ

and so Fl ∈ LD as required.
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2.2 The Jet Factorisation System

In the classical (non-intuitionistic) logic that underpins classical Lie theory it

is not possible to form the set of all elements of an n-dimensional Lie group

G that are ‘infinitesimally close’ to the identity element e of G in a rigorous

manner. Instead we use the following heuristic: whenever we want to work

with elements of G that are infinitesimally close to e we instead work with

the formal group law or Lie algebra of G. By contrast the internal logic of a

well-adapted model of synthetic differential geometry E is not Boolean and we

have already seen that certain ‘infinitesimal’ objects (that are not isomorphic

to the terminal object) such as

D∞ =
∞⋃
i=1

{x ∈ R : xk+1 = 0}

exist in E . In this thesis we will exploit these infinitesimals and work directly

with the infinitesimal neighbourhood of the identity element. In Section 2.3.2

we will assign to any category C in a well-adapted model E a subcategory C∞
with the same objects but only those arrows which are infinitesimally close to

an identity arrow. The study of this subcategory will correspond to the study

of the formal group law of a Lie group. As a first step in the construction of C∞
we give a concrete procedure that starts with an arrow f in E and returns the

infinitesimal neighbourhood of the image of f . For example if f = 0 : 1→ R

then we would want the infinitesimal neighbourhood of the image of f to be

D∞ above. Recall from Example 2.1.39 that the (Epi,Mono)-factorisation

system on E gives us the image of an arrow f as the mediating object in the

(Epi,Mono)-factorisation of f :

A� im(f)� B

In this section we will define the jet factorisation system on E/M which will be

a slight ‘perturbation’ of the (Epi,Mono)-factorisation system. The mediating

object of the factorisation of an arrow f using the jet factorisation system will

be the infinitesimal neighbourhood of the image of f that we require.

We will construct the jet factorisation system as an E/M -factorisation

system in the slice category E/M . Since both E and E/M are Grothendieck
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toposes the conditions of Corollary 2.1.38 that we use to construct it are easily

seen to be satisfied.

2.2.1 Jet Factorisation in the Slice Topos

We define the jet factorisation system on any slice category E/M of the smooth

topos E . Since it is a topos the category E is locally cartesian closed. Using

this fact, we show that for any arrow f : X → Y in E both the pullback functor

f∗ : E/Y → E/X and its left adjoint Σf : E/X → E/Y preserve the left class

of the jet factorisation systems on E/X and E/Y . This will be used in the

next section to define the composition operation on the jet part of a category

in E . In the case M = 1 the right class of the jet factorisation system has

been studied before. They are the formal-etale maps in I.17 of [19] and the

formally-open morphisms in Section 1.2 of Volume 3 of [14]. For the standard

theory of toposes we refer to [23].

In this section E will be a smooth topos and M an object of E . To begin

with let us recall the definition of slice category. It can be found for example

in construction 4 of Section 1.6 in [1].

Definition 2.2.1. The slice category E/M of a category E over an object

M ∈ E has as objects all arrows f ∈ E such that the codomain of f is M .

To keep track of the domain of f we write the objects of E/M in the form

(dom(f), f). An arrow g : (X, f) → (X ′, f ′) in E/M is an arrow g : X → X ′

in E such that f ′ ◦ g = f , as indicated in

X X ′

M
f

g

f ′

The following is part of Theorem 1.42 in [13].

Theorem 2.2.2. Let E be a topos, X an object of E. Then E/X is a topos.

Definition 2.2.3. Let Λ be the following class of arrows in E/M :

Λ = {(M, 1M )
(1M ,0)−−−−→ (M ×D,π1) : D ∈ Spec(Weil)}

Then the jet factorisation system on E/M is the factorisation system

(L∞, R∞) = ( (Λ⊥V ∩M)⊥V ,Λ⊥V ∩M)
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generated by Λ using Corollary 2.1.38 where V = E/M and where M is as

in Corollary 2.1.38. Note that since E/M is a Grothendieck topos all of the

conditions in Corollary 2.1.38 are satisfied.

To put this in more concrete terms, an arrow r : X → Y in E/M is in the

right class R∞ (and is called jet closed) iff it is an E/M -monomorphism and

X(M×D,π1) X(M,1M )

Y (M×D,π1) Y (M,1M )

r(M×D,π1)

X(1M,0)

r(M,1M )

Y (1M,0)

is a pullback in E/M for all D in Spec(Weil). An arrow l : A→ B in E/M is

in the left class L∞ (and is called jet dense) iff for all r ∈ R∞

XB XA

Y B Y A

rB

Xl

rA

Y l

is a pullback in E/M .

We can relate the jet factorisation systems on different slices over E by

using the fact that E is locally cartesian closed.

Proposition 2.2.4. Let f : G→M be an arrow in E. Let f∗ : E/M → E/G
be the functor defined by pullback along f . Then f∗ preserves exponentials and

has both a left adjoint Σf and right adjoint Πf ; the left adjoint Σf is given by

postcomposition with f .

E/G E/M

Σf

Πf

⊥f∗

Proof. This is Theorem 2 on page 193 in [23].

Lemma 2.2.5. Let ρ : X � Y be a jet closed arrow in E/M and f : G→M

an arrow in E. Then f∗(ρ) is a jet-closed arrow in E/G.

Proof. Since ρ is jet closed in E/M we have that for all D ∈ Spec(Weil) the

following square is a pullback:

X(M×D,π1) X

Y (M×D,π1) Y

ρ(M×D,π1)

X(1M,0)

ρ

Y (1M,0)
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Using the fact that f∗ preserves exponentials we see that:

f∗


X(M×D,π1) X

Y (M×D,π1) Y

ρ(M×D,π1)

X(1M,0)

ρ

Y (1M,0)

 ∼=
f∗(X)(G×D,π1) f∗(X)

f∗(Y )(G×D,π1) f∗(Y )

f∗(ρ)(G×D,π1)

f∗(X)(1G,0)

f∗(ρ)

f∗(Y )(1G,0)

Then using the fact that f∗ is a right adjoint we deduce that the right hand

square is a pullback for all D ∈ Spec(Weil) and so f∗(ρ) is jet-closed in

E/G.

Lemma 2.2.6. Let F a U be adjoint functors. Suppose that F preserves

products. Then:

(UA)B ∼= U(AFB)

Proof. We will establish a natural bijection between the generalised elements

of both sides:
X → (UA)B

X ×B → UA

F (X ×B)→ A

FX → AFB

X → U(AFB)

as required.

Lemma 2.2.7. Let ρ : X � Y be a jet closed arrow in E/G and f : G→M

an arrow in E. Then Πf (ρ) is a jet-closed arrow in E/M .

Proof. Since ρ is jet closed in E/G we have that for all D ∈ Spec(Weil) the

following square is a pullback:

X(G×D,π1) X

Y (G×D,π1) Y

ρ(G×D,π1)

X(1G,0)

ρ

Y (1G,0)

Using Lemma 2.2.6 we see that:

Πf


X(G×D,π1) X

Y (G×D,π1) Y

ρ(G×D,π1)

X(1G,0)

ρ

Y (1G,0)

 ∼=
Πf (X)(M×D,π1) Πf (X)

Πf (Y )(M×D,π1) Πf (Y )

Πf (ρ)(M×D,π1)

Πf (X)(1M,0)

Πf (ρ)

Πf (Y )(1M,0)
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Then using the fact that Πf is a right adjoint we deduce that the right hand

square is a pullback for all D ∈ Spec(Weil) and so Πf (ρ) is jet-closed in

E/M .

Corollary 2.2.8. Let l be jet dense in E/G and f : G → M an arrow in E.

Then Σf (l) is jet dense in E/M .

Proof. Follows immediately from Lemma 2.2.5 and Lemma 2.1.41.

Corollary 2.2.9. Let λ be a jet dense arrow in E/M and f : G → M an

arrow in E. Then f∗(λ) is jet dense in E/G.

Proof. Follows immediately from Lemma 2.2.7 and Lemma 2.1.41

2.2.2 Jet Factorisation Using Neighbours

The jet factorisation system presented in Section 2.2.1 can be thought of as

a ‘perturbation’ of the standard (Epi,Mono)-factorisation in Example 2.1.39.

Intuitively speaking, if f : A→ B is a jet dense arrow and b is an element of B

then although there might not exist an element a of A such that fa = b there

does exist an element a′ of A such that fa′ is ‘infinitesimally close’ to b. We

can give a similar heuristic description for the jet closed arrows. If g : X � Y

is a jet closed arrow then it is a monomorphism by definition. But g satisfies

an additional condition: if x is an element of X and y is an element of Y such

that gx is infinitesimally close to y then there exists an element x′ in X such

that gx′ = y. In this section we make these ideas precise by defining a reflexive

relation ∼ in the internal logic of the topos E/M for which a ∼ b encodes the

idea that b is contained in some infinitesimal perturbation (or jet) which is

based at a. Then we define a factorisation system using this relation which

corresponds to our intuitive idea of perturbing the (Epi,Mono)-factorisation

in E/M . Finally we show that this factorisation system in fact coincides with

the jet factorisation system.

First we recall the definition of generalised element in a category from

Definition 1.1 in Part II of [19].
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Definition 2.2.10. Let R be an object in a category E . An element of R is

an arrow in E with codomain R. The domain of the arrow is called the stage

of definition of the element.

Notation 2.2.11. We write r ∈X R to denote that r is an arrow X → R in

E and hence r is an element of R at stage of definition X. When we work with

an arbitrary fixed stage of definition we will sometimes write simply r ∈ R
where it causes no confusion. For interpreting existential quantification and

disjunction we will need to consider covers (ιi : Xi → X)i of the stage of

definition X. Then if a ∈X R will write a|Xi for the element aιi ∈Xi R.

Let DW be a Weil spectrum in E . Then we abuse notation by writing DW

for the object (M ×DW , π1) of E/M .

Definition 2.2.12. Let a, b ∈X B where X and B are objects of the topos

E/M . Then a ∼ b iff the proposition∨
W∈Weil

∃φ ∈ BDW . ∃d ∈ DW . φ(0) = a ∧ φ(d) = b

holds in the internal logic of E/M .

Explicitly: there exists a cover (ιi : Xi → X)i∈I in E/M such that for each

i there exists an object DWi ∈ Spec(Weil), an arrow φi : Xi ×DWi → B and

an arrow di : Xi → DWi such that

Xi Xi ×DWi

B B

a|Xi

(1Xi ,0)

φi

1B

and

Xi Xi ×DWi

B B

b|Xi

(1Xi ,di)

φi

1B

commute.

Remark 2.2.13. The relation ∼ is not always symmetric. In fact it is not

symmetric in the case B = D and M = 1 as described in Example 2.3.21.
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Definition 2.2.14. The relation ≈ is the transitive closure of ∼ in the internal

logic of E/M . This means that for a, b ∈ B we have a ≈ b iff the proposition∨
n∈N
∃~x ∈ Bn.

∧
1≤k≤n−1

(πk~x ∼ πk+1~x) ∧ (π1~x = a) ∧ (πn~x = b)

holds in the internal logic of E/M .

In terms of covers: let a, b ∈X B where X and B are objects of E/M . Then

a ≈ b iff there exists a cover (ιi : Xi → X)i∈I and for each i there exists a

natural number ni and elements xi0 , xi1 , ..., xini ∈Xi B such that

a|Xi = xi0 ∼ xi1 ∼ ... ∼ xini = b|Xi

Remark 2.2.15. For any arrow f : A→ B we have that a ∼ a′ in A implies

that fa ∼ fa′ in B. Indeed if we have D ∈ Spec(Weil), φ ∈ BD and d ∈ D
such that f(0) = a and f(d) = a′ then for the same D and d we see that

ψ = Bf ◦ φ has ψ(0) = fa and ψ(d) = fa′.

We can easily iterate this procedure to obtain that a ≈ a′ in A implies

fa ≈ fa′ in B.

Definition 2.2.16. Let f : A→ B be an arrow in E/M . Then f is W-dense

(or f ∈ LW) iff the proposition

∀b ∈ B. ∃a ∈ A. fa ≈ b

holds in the internal logic of E/M .

Explicitly: for all b ∈X B there exists a cover (ιi : Xi → X)i∈I and elements

ai ∈Xi A such that f(ai) ≈ b|Xi .

Definition 2.2.17. Let g : A→ B be an arrow in E/M . Then g is W-closed

(or g ∈ RW) iff the propositions

∀a ∈ A. ∀b ∈ B. ga ≈ b =⇒ (∃c ∈ A. gc = b)

and

∀a, a′ ∈ A. ga = ga′ =⇒ (a ≈ a′)

hold in the internal logic of E/M .

Explicitly the first condition is: for all a ∈X A and b ∈X B such that ga ≈ b
there exists a cover (ιi : Xi → X)i∈I and elements ci ∈Xi A such that a|Xi ≈ ci
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and gci = b|Xi . Since the second condition only uses universal quantification

and conjunction it is not necessary to pass to a cover.

Remark 2.2.18. Note that in the sequel the right class of the jet factorisa-

tion system will turn out not to be simply RW but its intersection with the

monomorphisms in E/M . The larger class RW will be useful in Section 2.2.3.

From now on we will work entirely in the internal logic of E/M . The

interested reader is welcome to translate the statements below into their

external versions involving covers by applying the sheaf semantics explained in

Section VI.7 of [23].

Lemma 2.2.19. Let g : B� E be a W-closed monomorphism. Suppose that

gb ∼ gb′ in E. Then b ∼ b′ in B.

Proof. Since gb ∼ gb′ there exists D ∈ Spec(Weil), φ ∈ ED and d ∈ D such

that φ(0) = gb and φ(d) = gb′. However it is immediate from the fact that g

is W-closed that φ is in the image of gD : BD � ED and so there exists ψ

such that φ = gDψ. But g(ψ(0)) = gb and g(ψ(d)) = gb′ hence ψ(0) = b and

ψ(d) = b′ and b ∼ b′ as required.

Corollary 2.2.20. Let g : B � E be a W-closed monomorphism. Suppose

that gb ≈ gb′ in E. Then b ≈ b′ in B.

Proof. Let gb = e0 ∼ e1 ∼ ... ∼ en = gb′ exhibit gb ≈ gb′. Then the fact that g

is W-closed combined with e0 = gb implies that there exists b1 ∈ B such that

e1 = gb1. Then by Lemma 2.2.19 we see that b ∼ b1. The result follows easily

by iterating this procedure.

Lemma 2.2.21. Let h : A→ E be an arrow in E/M . Then there exist g ∈ RW
and f ∈ LW such that g is a monomorphism and h = gf . The mediating object

in the factorisation has the presentation

B = {x ∈ E : ∃a ∈ A. ha ≈ x} g−→ E

in the internal logic of E/M .
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Proof. It is immediate that h factors through the subobject B because the

relation ≈ is reflexive. Write h = gf for this factorisation.

To see that g is W-closed let b ∈ B and e ∈ E such that gb ≈ e. By

the definition of B there exists an a ∈ A such that ha ≈ gb. Hence by the

transitivity of ≈ we obtain that ha ≈ e. So e lies in the subobject B and so g

is W-closed as required.

To see that f is W-dense let b ∈ B. Now by the definition of B there exists

an a ∈ A such that ha ≈ gb. But since g is a W-closed monomorphism we can

use Lemma 2.2.20 we deduce that fa ≈ b as required.

Proposition 2.2.22. Let M be the class of monomorphisms in E/M . Then

the pair

(L,R) = (LW , RW ∩M)

defines a (E/M)-factorisation system.

Proof. We will check the conditions of Lemma 2.1.9. The existence of factori-

sations is Lemma 2.2.21 and it is clear that the classes LW and RW ∩M are

replete.

It remains to show that for all W-closed monomorphisms g : C � E and

all W-dense arrows f : A→ B we have that f ⊥E/M g. That means we need

to show that the square

CB CA

EB EA

gB

Cf

gA

Ef

is a pullback. So suppose that φ ∈ EB and ψ ∈ CA such that φf = gψ. We

define ξ ∈ CB as follows. Start with b ∈ B. Since f is W-dense there exists

a ∈ A such that fa ≈ b. Then by Remark 2.2.15 we have that gψa = φfa ≈ φb.
Now since g is W-closed we have that there exists c ∈ C such that gc = φb.

This c is unique because g is monic. So finally we define ξb = c. It is immediate

that gξb = gc = φb. From the equation gξfa = φfa = gψa we deduce that

ξfa = ψa as required.

Proposition 2.2.23. Let f : A� B be a monomorphism in E/M . Then f
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is W-closed iff for all D ∈ Spec(Weil) the square

A(M×D,π1) A

B(M×D,π1) B

fD

A0

f

B0

(2.4)

is a pullback.

Proof. We will show that L∞ ⊂ LW and R∞ ⊂ RW . This will suffice to prove

the result because

L∞ ⊂ LW =⇒ L⊥W ⊂ L⊥∞ =⇒ RW ⊂ R∞

To show that L∞ ⊂ LW we need to show that for all D ∈ Spec(Weil) the

arrow (M, 1M )→ (M ×D,π1) is in LW . For this it will suffice to show that

for all b ∈ (M × D,π1) we have 0 ≈ b. Here 0 denotes the global element

(1M , 0) : (M, 1M )→ (M×D,π1). So we choose DW = (M×D,π1), φ = 1M×D

and d = b. Then φ(0) = 0 and φ(d) = b.

To show that R∞ ⊂ RW let f be a monomorphism, let a ∈ A and b ∈ B
such that fa ∼ b and suppose that the square in (2.4) is a pullback. The

condition fa ∼ b means that there is a DW ∈ Spec(Weil), a φ ∈ B(M×DW ,π1)

and a d ∈ (M ×DW , π1) such that φ(0) = fa and φ(d) = b. Since φ(0) = fa

we can induce a ψ ∈ A(M×D,π1) using the pair (a, φ). But then we have

fψ(d) = φ(d) = b.

We now iterate this argument to obtain that f is W-closed as required.

Corollary 2.2.24. The (LW , RW ∩M) factorisation system and the jet fac-

torisation system coincide in E/M .

2.2.3 Stability Properties of the Jet Factorisation

In this section and the next we draw further analogies between the jet factori-

sation system on E and the (Epi,Mono)-factorisation system. Recall that for

all factorisation systems the left class is closed under colimits and the right

class is closed under limits. The (Epi,Mono)-factorisation system has the

additional property that the left class is closed under pullback and the right

class is closed under pushouts. We first prove that the right class of the jet
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factorisation is closed under pushout using a standard result concerning the

stability of colimits under pullback in a topos. Then we identify a condition

on an arrow g in the left class of the jet factorisation system which guarantees

that the pullback of g along a W-closed arrow k is again jet dense.

Recall from Proposition 2.2.4 that for all f : X → Y the functor f∗ defined

by pullback along f preserves colimits. Recall also from Proposition 1.3.8 that

for any D ∈ Spec(Weil) the functor (−)D has a right adjoint.

Proposition 2.2.25. In a topos, consider the pushout

A B

C C

g

f

k

h

with g a monomorphism. Then k is a monomorphism as well and the square

is also a pullback.

Proof. This is Proposition 5.9.10 in [2].

Proposition 2.2.26. Let r1 : X1 � Y1 be a jet closed arrow in E/M and

X1 X2

Y1 Y2

r1

f

r2

g

be a pushout in E. Then the arrow r2 is jet closed.

Proof. Since Y2
∼= Y1 +X1 X2 the conclusion of Proposition 1.3.8 tells us that

Y D
2
∼= Y D

1 +XD
1
XD

2 . This means that

(XD
1 , Y

0
2 g

DrD1 ) (XD
2 , Y

0
2 r

D
2 )

(Y D
1 , Y 0

2 g
D) (Y D

2 , Y 0
2 )

rD1

fD

r2

gD

is a pushout in (E/M)/Y2 and so

(XD
1 ×Y2 X2, Y

0
2 g

DrD1 π1) (XD
2 ×Y2 X2, Y

0
2 r

D
2 π1)

(Y D
1 ×Y2 X2, Y

0
2 g

Dπ1) (Y D
2 ×Y2 X2, Y

0
2 π1)

rD1 ×Y2X2

fD×Y2X2

rD2 ×Y2X2

gD×Y2X2
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is a pushout in (E/M)/X2 because the functor r∗2 defined by pulling back along

r2 has a right adjoint by Proposition 2.2.4. Therefore

XD
1 ×Y2 X2 XD

2 ×Y2 X2

Y D
1 ×Y2 X2 Y D

2 ×Y2 X2

rD1 ×Y2X2

fD×Y2X2

rD2 ×Y2X2

gD×Y2X2

is a pushout in E/M . We now find simpler descriptions of the objects involved

in this pushout square. In the diagram

Y D
1 ×Y2 X2 X1 X2

Y D
1 Y1 Y2

r1

f

r2

Y 0
1 f ′

the right hand square is a pullback by Proposition 2.2.25 and the composite

rectangle is a pullback by definition. Hence Y D
1 ×Y2 X2

∼= XD
1 because r1 is

jet closed. Similarly in the diagram

XD
2 ×Y2 X2 X2 X2

XD
2 X2 Y2

1X2

1X2

r2

X0
2 r2

the right hand square is a pullback because r2 is a monomorphism and the

whole rectangle is a pullback by definition. Hence XD
2 ×Y2 X2

∼= XD
2 . Finally,

in the diagram

XD
1 ×Y2 X2 XD

1 X1 X2

XD
1 Y D

1 Y1 Y2

rD1

X0
1

r1

f

r2

rD1 Y 0
1 f ′

we have already seen that the two squares to the right are pullbacks and the

outer rectangle is a pullback by definition. In addition rD1 is a monomorphism

because (−)D preserves monomorphisms. Hence XD
1 ×Y2 X2

∼= XD
1 and

Q ∼= XD
2 +XD

1
XD

1
∼= XD

2 as required.

Now we turn to the special case when jet dense arrows are stable under

pullback.
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Proposition 2.2.27. Let g be jet dense and k be W-closed in E/M . Suppose

that the relation ≈ is symmetric on the object E and that the square

A B

C E

f

h

g

k

is a pullback. Then f is also jet dense.

Proof. Recall that an arrow in E/M is jet dense iff it is W-dense. Let c ∈ C.

We need to show that there exists a ∈ A such that fa ≈ c. Since g is W-dense

there exists b ∈ B such that gb ≈ kc. Since ≈ is symmetric on E we see that

also kc ≈ gb. Now k is W-closed so there exists c′ ∈ C such that c ≈ c′ and

kc′ = gb. The a ∈ A that we require is the one defined by the pair a = (c′, b).

We now confirm that f(c′, b) = c′ ≈ c. First we see that kc′ = gb ≈ kc

and so there exists c′′ ∈ C such that c′ ≈ c′′ and kc′′ = kc. But now by the

definition of W-closed we have that c′′ ≈ c and by transitivity of ≈ that c′ ≈ c
as required.

Corollary 2.2.28. Let g be jet dense and k be jet closed. Suppose that the

relation ≈ is symmetric on E and the square

A B

C E

f

h

g

k

is a pullback. Then f is also jet dense.

2.2.4 Pullback Stability in the Cahiers Topos

If we consider the proof of Proposition 2.2.27 the condition that k is jet closed

is used to ensure that we obtain a genuine element of the pullback A: we

needed to find c′ ∈ C and b ∈ B such that kc′ = gb on the nose rather than

just up to an infinitesimal perturbation. But intuitively speaking it seems

as though every generalised element of a space should be expressible as a

perturbation of some ‘base’ or ‘reduced’ element that has no infinitesimal

variation. To make this idea precise we will choose a specific model of synthetic

differential geometry: the Cahiers topos EW of Definition 1.2.10. Recall that
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the representable objects of EW are all of the form DW ×M for some manifold

M and DW ∈ Spec(Weil). This will allows us to appropriately define the base

element of a generalised element. We then show that every generalised element

is an infinitesimal perturbation of its base and use this to prove that in this

particular topos the pullback of any jet dense arrow along an arbitrary arrow

is again jet dense.

Definition 2.2.29. Let a : X → B in E where X is representable. Therefore

we can write X = M×DW ′ for some manifold M and some DW ′ ∈ Spec(Weil).

Then the base a of a is the arrow a ◦ 0◦! : X → B:

a = M ×DW ′
M×!−−−→M × 1

M×0−−−→M ×DW ′
a−→ B

Lemma 2.2.30. Let a : X → B in E where X = M ×DW ′ is representable.

Then we have a ∼ a.

Proof. We choose the singleton identity cover and DW = DW ′ . For φ and d

we choose:

φ = M ×DW
π1−→M

b̌−→ BDW

and

d = M ×DW
π2−→ DW

therefore φ(d) = b and φ(0) = b.

Lemma 2.2.31. Let a ∼ b. Then we have the equality a = b.

Proof. Suppose that (ιi : Xi → X)i∈I , DWi , φi and di witness that a ∼ b for

X = M ×DW ′ representable. By the definition of the Cahiers coverage we can

write Xi = Mi×DW ′ for some Mi that cover M when interpreted as manifolds.

Then

b|Xi = Mi ×DW ′
ιi×DW ′−−−−−→M ×DW ′

Mi×!−−−→Mi
M×0−−−→M ×DW ′

b−→ B

= Mi ×DW ′
Mi×!−−−→Mi × 1

Mi×0−−−→Mi ×DW ′
ιi×DW ′−−−−−→M ×DW ′

b−→ B

= Mi ×DW ′
Mi×!−−−→Mi × 1

Mi×0−−−→Mi ×DW ′
b|Xi−−→ B

= Mi ×DW ′
Mi×!−−−→Mi × 1

Mi×0−−−→Mi ×DW ′
(φi,di)−−−−→ BDWi ×DWi

ev−→ B

= Mi ×DW ′
Mi×!−−−→Mi × 1

Mi×0−−−→Mi ×DW ′
(φi,0)−−−→ BDWi ×DWi

ev−→ B

= a|Xi
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where the fifth equality is due to the fact that there is only one arrow 0 : N → D

for any manifold N and any D ∈ Spec(Weil). The result follows because the

ιi are jointly epimorphic.

Corollary 2.2.32. Let a ≈ b. Then a = b.

Proposition 2.2.33. Let g : A→ B be W-dense in E and

P A

C B

π1

π2

g

k

be a pullback in E. Then the arrow π1 is jet dense.

Proof. Let c ∈X C. Then kc ∈X B. Since g is jet dense there exists a cover

(ιi : Xi � X)i∈I and elements ai ∈Xi A such that g(ai) ≈ (kc)|Xi . By

Corollary 2.2.32 we have that

gai = g(ai) = k(c|Xi) = k
(
c|Xi

)
because pre- and postcomposition commute. So we have that

(c|Xi , ai) ∈Xi P

but π1(c|Xi , ai) = c|Xi ∼ c|Xi hence π1 is jet dense as required.

2.3 The Basic Adjunction

In the final two sections of this Chapter we will construct the adjunction which

underpins our treatment of Lie theory. The domain of the left adjoint will be

a full subcategory Cat∞(E) of the category Cat(E) of internal categories in E
whose objects will be called jet categories. The role played by jet categories in

this thesis will be roughly analogous to the role played by formal group laws

in classical Lie theory and as such they will only contain infinitesimal data

in the arrow space. Intuitively Cat∞(E) consists of the categories such that

every arrow is infinitesimally close to an identity arrow. In Section 2.3.2 we

make this idea precise using the jet factorisation system on the slice categories

E/M introduced by Definition 2.2.3. We will define by hand a functor (−)∞
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that assigns to each category C a jet category C∞ and show that (−)∞ is a

coreflection

Cat∞(E) Cat(E)⊥

ι

(−)∞

where ι is the full inclusion.

The domain of the right adjoint of our main adjunction will be a full

subcategory Catint(E) of Cat(E) whose objects will be called integral complete

categories. The role played by integral complete categories will be analogous to

the role played by Lie groupoids in the classical theory. Intuitively Catint(E)

consists of the categories in which it is possible to integrate certain infinitesimal

data into macroscopic arrows. This choice will be justified in Chapter 4 where

it will turn out to be the property that we require to prove Lie’s second theorem

in this context. In Section 2.3.3 we make this precise by introducing the integral

factorisation system on Cat(E) in Definition 2.3.29. We will use the established

theory relating reflective subcategories and factorisation systems to obtain a

functor (−)int which assigns to each category C an integral complete category

Cint which is a reflection

Cat(E) Catint(E)

(−)int

⊥

j

where j is the full inclusion. The composite of the coreflection ι a (−)∞ and

the reflection (−)int a j gives us the basic adjunction that we require:

Cat∞(E) Catint(E)

(−)int

⊥

(−)∞

To construct the integral factorisation system we will need two categories which

are naturally constructed from the unit interval I that is an object of all of our

well-adapted models. In Chapter 3 we will need to produce some very similar

constructions so we will now give some general procedures to create all the

different types of category that we require from a space X.
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2.3.1 Categories from Spaces

In the sequel we will require a groupoid ∇I and a category I to be the

appropriate ‘representing object for paths’ in Gpd(E) and Cat(E) respectively.

That is to say ∇I and I will play an analogous role to that played by the

unit interval I in the category Man. In this section we construct these two

categories. In addition for every object X in E we construct a category NX
which has base space X and, intuitively speaking, has an (unique) arrow x→ y

iff y is infinitesimally close to x.

Definition 2.3.1. Let C, M , s and t denote the arrow space, the object space,

the source map and the target map respectively of a category C in E . Then C
is a preorder iff the arrow (s, t) : C →M ×M is a monomorphism.

Definition 2.3.2. The functor N− : E → Cat(E) is defined as follows. The

category NX is the preorder with underlying reflexive graph

{(a, b) ∈ X2 : a ≈ b} X
π1

∆

π2

where ∆ denotes the diagonal map. The composition of NX is uniquely

determined by this data because (π1, π2) is a monomorphism. Given an arrow

f : X → Y in E the internal functor Nf is given by the pair (f × f, f). This is

always a reflexive graph homomorphism because

a ≈ b =⇒ fa ≈ fb

by Remark 2.2.15 and it is easily seen to preserve composition.

Example 2.3.3. We formulate an alternative description of the category NI .
It is easy to see that a ≈I a+ d for all a ∈ I and d ∈ D∞ and so we have an

arrow I ×D∞ → N2
I defined by (a, d) 7→ (a, a+ d). We claim that this arrow is

invertible, for which it will suffice to show that the arrow N2
I → I2 defined by

(a, b) 7→ (a, b− a) factors through I ×D∞� I2. To do this we need to show

that for all (a, b) ∈ I2 if a ≈ b then b− a is nilpotent. By an easy induction

we see that it will suffice to show that the corresponding property with ∼
in place of ≈ holds. (The induction step uses the fact that if (b − a)k = 0

and (c − b)k = 0 then (c − a)n+k = 0.) So suppose that a ∼ b. This means
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that there exists an object DW ∈ Spec(Weil), and element φ ∈ IDW and an

element d ∈ DW such that φ(0) = a and φ(d) = b. But by the Kock-Lawvere

axiom (and the fact that the inclusion I � R is jet closed) we have that

b = a+N

for some nilpotent N as required. This means that we can give the following

alternative description of the category NI .
The category NI has underlying reflexive graph isomorphic to

I ×D∞ I
+

e

π1

where e = (1I , 0) and composition I ×D∞ ×D∞ → I ×D∞ defined by

(a, d, d′) 7→ (a, d+ d′)

Similarly we have that N2
Ik
∼= Ik ×Dk

∞ and so NIk ∼= (NI)k as categories.

Definition 2.3.4. The functor ∇ : E → Gpd(E) is defined as follows. The

groupoid ∇X has underlying reflexive graph

X ×X X
π1

∆

π2

and again the composition of ∇X is uniquely determined by this data. The

inverse i∇X : X2 → X2 is defined by (a, b) 7→ (b, a). Given an arrow f : X → Y

in E the internal groupoid homomorphism ∇f is given by the pair (f × f, f).

Definition 2.3.5. The category I in E is defined as follows. Let J be the set

of all smooth functions vanishing on the closed subset

{(a, b) : a ≤ b} ⊂ R2

This gives an object [2, J ] in the category C of Definition 1.1.1, which is clearly

point determined and so lies in each of CW , Cjet, Cfp and Cgerm. In each case

let L be the corresponding representable object in the corresponding smooth

topos E . Then L� I × I is a monomorphism in E . The underlying graph of I
is

L I
π1

∆

π2

and the composition of I is uniquely determined by this data.



68 CHAPTER 2. FACTORISATION SYSTEMS

Remark 2.3.6. Since every function f ∈ J is flat on the subset {(a, b) : a ≤ b}
we see that the subobject L� I × I is jet closed.

2.3.2 The Jet Part of a Category

We define the (asymmetric) jet part of a category in a smooth topos E . Intu-

itively the arrow space of the jet part will consist of all the elements of the

category which we can reach along an infinitesimally small source constant

path starting at an identity arrow. We can put the structure of a reflexive

graph on these arrows as follows.

Notation 2.3.7. In this section C will denote a category in E with underlying

reflexive graph

C =

(
C M

s

e

t

)
and composition µ. We will write n×C = C ×t s C ×t s ... ×t s C.

Definition 2.3.8. Let

M C∞ C

M

1M

e∞

s∞

ι∞

s

be the jet-factorisation of e in E/M . Then the jet reflexive graph of C is the

reflexive graph

C∞ =

(
C∞ M

s∞

e∞

t◦ι∞

)
in E .

To equip this reflexive graph C∞ with a composition operation we require

a slight digression. To understand the reason for this digression we consider

the special case that the base space M = 1. Then we can make the following

straightforward argument. The arrow

C∞ ×M
1C∞×e∞−−−−−−→ C∞ × C∞

is jet dense because (as an enriched factorisation system) the left class of the

jet factorisation system is closed under tensor. Then we define the composition
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on C∞ to be the unique lift of the following square

C∞ ×M C∞

C∞ × C∞ C

1C∞×e∞

π1

ι∞µ∞

µ◦(ι∞×ι∞)

and the associativity and unit axioms can be seen to hold. However if we now

attempt to do the same thing in the slice category E/M we can still show that

the arrow

(C∞, s∞)
(1C∞ ,e∞)
−−−−−−→ (C∞, t∞)× (C∞, s∞) ∼= (C∞ ×t∞ s∞ C∞, t∞π1)

is jet dense but there is no way to map out of (C ×t s C, tπ1) using µ. The

problem is that given arrows f, g ∈ C such that cod(f) = dom(g) the map

tπ1 picks out the ‘middle’ object cod(f) which cannot be specified from the

composite µ(f, g) alone. We can rescue the idea of using a lift to define the

composition by using the results of Section 2.2.1 to prove that the arrow

(C∞, s∞)
(1C∞ ,e∞t∞)
−−−−−−−−→ (C∞ ×t∞ s∞ C∞, s∞π1)

is jet dense in E/M . Then we can proceed in an analogous fashion to the case

M = 1.

The next Lemma tells us that the map which takes an arrow g of C∞ and

returns the composable pair (g, 1cod(g)) in 2×C∞ is jet dense over the source of

g.

Lemma 2.3.9. The arrow

C∞ 2×C∞

M

s∞

(1C∞ ,e∞t∞)

s∞◦π1

is jet-dense in E/M .

Proof. The arrow

M C∞

M

1M

e∞

s∞
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in E/M is jet dense by the definition of jet part in Definition 2.3.8. Then by

Corollary 2.2.9 the arrow

C∞ 2×C∞

C∞

1C∞

(1C∞ ,e∞t∞)

π1

obtained by pulling back along t∞ is jet dense in E/C∞. But now by Corol-

lary 2.2.8 the arrow

C∞ 2×C∞

M

s∞

(1C∞ ,e∞t∞)

s∞π1

obtained by postcomposition by s∞ is jet dense in E/M as required.

Now we are in a position to define a composition on the jet part of a

category.

Corollary 2.3.10. Let C be a category with composition µ : C ×t sC → C. Let

C∞ be the jet reflexive graph of of C. Then we can make C∞ into a category

by defining the composition µ∞ : C∞ ×t s C∞ → C∞ as the diagonal lift of the

following diagram:

(C∞, s∞) (C∞, s∞)

(2×C∞, s∞ ◦ π1) (C, s)

(1C∞ ,e∞t∞)

1C∞

ι∞µ∞

µ◦(2×ι∞)

where ι∞ is jet closed by the definition of C∞ and (1C∞ , e∞t∞) is jet dense by

Lemma 2.3.9. We call the category C∞ the jet part of C.

Proof. The associativity of µ∞ is inherited from the associativity of µ. To see
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this consider the diagram:

(3×C, sπ1) (2×C, sπ1)

(3×C∞, s∞π1) (2×C∞, s∞π1)

(2×C∞, s∞π1) (C∞, s∞)

(2×C, sπ1) (C, s)

(µ,1C)

(1C ,µ)

µ

(1C∞ ,µ∞)

(µ∞,1C∞ )

3×ι∞

µ∞

2×ι∞

µ∞

2×ι∞
ι∞

µ

where the outer square commutes because µ is associative and the top, bottom,

left and right squares commute using the definition of µ∞ above. But this

implies that the inner square commutes because ι∞ is monic.

One of the unit laws for µ∞ is already enforced by the upper commutative

triangle in the definition of µ∞. The other follows from combining the fact

that ι∞ is monic and that in the diagram:

(C, s) (C, s)

(C∞, s∞) (C∞, s∞)

(2×C∞, s∞π1) (C∞, s∞)

(2×C, sπ1) (C, s)

(eπ1,π2)

1C

1C

1C∞

(e∞π1,π2)

ι∞

1C∞

ι∞

µ∞

2×ι∞ ι∞

µ

the outer square commutes using a unit law for µ and the other squares are

immediately seen to commute.

Example 2.3.11. Let (R,+) be the group with arrow space R and composition

given by addition. Then the jet part is ({(a ∈ R : 0 ≈ a)},+). Using an

argument similar to the one in Example 2.3.3 we see that actually (R,+)∞ ∼=
(D∞,+). The argument generalises without difficulty to show that the jet part

of (Rn,+) is (Dn
∞,+).

Example 2.3.12. Let (G,µ) be a Lie group whose underlying smooth manifold

is n-dimensional. Since G is locally isomorphic to Rn we see that its jet part
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is a group of the form (Dn
∞, µ). Now to give a multiplication

µ : Dn
∞ ×Dn

∞ → Dn
∞

is to give arrows

f1, ..., fn : (D∞)2n → R

taking values in nilpotent elements. Now we have that

(D∞)2n =
⋃
k

(Dk)
2n

and so, since E(−, R) sends colimits to limits the hom-set E(D2n
∞ , R) is given

by the limit

...→ E(D2n
k+1, R)→ E(D2n

k , R)→ ...

which by the Kock-Lawvere axiom is equivalently the limit of the polynomial

algebras

...→ R[X1, ..., X2n]/Ik+1 → R[X1, ..., X2n]/Ik → ...

where Ik is the ideal generated by (Xk
1 , X

k
2 , ..., X

k
2n). This means that E(D2n

∞ , R)

can be identified with the ring R[[X1, ..., X2n]] of formal power series. Now

the condition that the fi take values in the nilpotent elements implies that

the constant term of the power series pi corresponding to fi is zero. Under

this correspondence, the group axioms for G correspond to the axioms making

p1, ..., pn into a formal group law. So the jet part of a classical Lie group encodes

precisely its underlying formal group law, as described in the introduction.

Definition 2.3.13. Let C be a category in E and C∞ be the category on its

jet part as defined in Corollary 2.3.10. Then C is a jet category iff the inclusion

C∞ � C induced by ι∞ is an isomorphism. We write Cat∞(E) for the full

subcategory of Cat(E) on the jet categories. We abuse notation and write ι∞

for both the inclusion C∞� C and the inclusion C∞� C.

Lemma 2.3.14. The function (−)∞ : Cat(E)→ Cat∞(E) extends to a functor.

Proof. Let φ : C→ D be a functor. Then the square

(M, 1M ) (D∞, s
D
∞)

(C∞, s
C
∞) (D, sD)

eD∞φ0

eC∞ ιD∞φ∞

φ1ιC∞
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commutes in E and hence there exists a unique filler φ∞. It is immediate from

the definition that φ∞ preserves identities. We now remark that in the cube

(2×C, s
Cπ1) (C, sC)

(2×C∞, s
C
∞π1) (C∞, s

C
∞)

(2×D∞, s
D
∞π1) (D∞, s

D)

(2×D, s
Dπ1) (D, sD)

2×φ1

µC

φ1

µC∞

2×φ∞

2×ιC∞

φ∞

ιC∞

µD∞

2×ιD∞

ιD∞

µD

the outer square commutes by functoriality of φ , the left and right faces

commute by definition of φ∞ and the top and bottom faces commute by the

definition of µ∞. Therefore the inner square commutes because the arrow ιD∞

is a monomorphism and hence φ∞ preserves composition as required.

Proposition 2.3.15. We have an adjunction j a (−)∞ where j is the full

inclusion Cat∞(E) ↪→ Cat(E). In other words Cat∞(E) is a coreflective sub-

category of Cat(E).

Proof. Let K be a jet category; this means that the inclusion ιK∞ : K∞� K is

an isomorphism. We define the unit η by ηK = (ιK∞)−1. Let C be an arbitrary

category in E . We define the counit ε of the adjunction by εC = ιC∞. Then

εj(K) ◦ j(ηK) = ιK∞ ◦ (ιK∞)−1 = 1jK and (εC)∞ ◦ ηC∞ = (ιC∞)∞ ◦ (ιC∞∞ )−1. But

by definition of (ιC∞)∞ we see that

M (C∞)∞ C∞

M C∞ C

1M

eC∞∞

(ιC∞)∞

ιC∞∞

ιC∞
eC∞ ιC∞

commutes and so ιC∞ ◦ (ιC∞)∞ ◦ (ιC∞∞ )−1 = ιC∞ ◦ (ιC∞)−1 ◦ ιC∞ = ιC∞ and so

(ιC∞)∞ ◦ (ιC∞∞ )−1 = 1C∞ because ιC∞ is a monomorphism.

Remark 2.3.16. The category Cat(E) of internal categories in E can be

enriched over E by interpreting all the data in the internal logic of E . Therefore
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for categories C = C ⇒M and D = D ⇒ N the hom-object

Cat(E)(C,D)

is the subobject of DC ×NM in E defined by the proposition

{(ψ, φ) : (sψ = φs) ∧ (tψ = φt) ∧ (ψe = eφ) ∧ (µ(2×ψ) = ψµ)}

the identity arrow idG : 1→ Cat(E)(G,G) is the global element (1G, 1M ) and

the composition

Cat(E)(C,D)× Cat(E)(D,E)
◦−→ Cat(E)(C,E)

is defined by (ψ1, φ1) ◦ (ψ2, φ2) = (ψ2ψ1, φ2φ1). The axioms expressing the

associativity and unit laws are proved in a completely analogous way to how

the associativity and unit laws for ordinary functors are proved.

If C is a category in E and X an object of E then cotensor CX is the

category that has underlying reflexive graph

CX MX
sX

eX

tX

and composition µX . Note that internal functors D→ CX are in bijection with

internal functors Ẋ ×D→ C where Ẋ is the internal category with underlying

reflexive graph

X X

1X

1X

1X

and the only possible composition. Henceforth we write DC for the object

Cat(E)(C,D) seen as an object of E .

Lemma 2.3.17. Let C and D be internal categories in E and D∞ and C∞ be

their jet parts. Then CD∞ ∼= CD∞
∞ in E.

Proof. To show that CD∞ ∼= CD∞
∞ it will suffice to show that for all representable

objects X in E and internal functors F : D∞ × Ẋ → C we have a unique lift G

making

C∞

D∞ × Ẋ C

ιC∞G

F
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commute. But we can just take G = F∞ because the fact that (−)∞ is a right

adjoint implies that (D∞ × Ẋ)∞ = D∞ × Ẋ.

In Section 2.2.2 we saw that the jet factorisation could be described using

the relation ≈ in E/M . This means that for preordered categories C in E the

jet part C∞ can also be described using the functor N.

Lemma 2.3.18. For any preorder C in Cat(E) with object space M the jet

part C∞ is the preorder with arrow space C2
∞ = N2

M ∩ C2.

Proof. Using Lemma 2.2.21 we have the following expression for the arrow

space of C∞:

(C2
∞, π1) = {(a, b) ∈ (C, π1) : ∃m ∈ (M, 1M ). ∆(m) ≈ (a, b)}

in the slice category E/M . Now objects of E/M are arrows in E so an element

q ∈ M in E corresponds to stage of definition in E/M . Let us fix a stage

of definition q ∈ M . Then an element (a, b) ∈ (C, π1) in E/M corresponds

to an element (a, b) ∈ C in E such that π1(a, b) = q. Similarly an element

m ∈ (M, 1M ) in E/M corresponds to an element m ∈ M such that m = q.

Therefore we have the equalities

C2
∞ = {(a, b, q) ∈ C ×M : (a = q) ∧ (∃m ∈M. (m = q) ∧ (∆(m) ≈ (a, b)))}

= {(a, b) ∈ C : a ≈ b}

= N2
M ∩ C2

as required.

In order to put the structure of a groupoid on the jet part C∞ of a category

C we require a little more than the assumption that C has the necessary

additional structure and relations to make it a groupoid. For the rest of this

section we fix a groupoid G that has underlying reflexive graph

G M
s

e

t

and multiplication µ. We will identify a necessary condition for the jet part

G∞ of G to have groupoid structure; first we need a preparatory lemma.
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Lemma 2.3.19. Let a, b ∈(X,sa) (G, s) such that a ≈ b at stage of definition

(X, sa). Let c ∈(X,sc) (G, s) such that tc = sa(= sb). Then ac ≈ bc at stage of

definition (X, sc).

Proof. First we write down the data entailed by a ≈ b at stage of definition

(X, sa). There is a cover (ιi : (Xi, saιi) → (X, sa))i∈I and for all i ∈ I the

following holds. For notational convenience we write ai for the restriction

a|(Xi,saιi) = aιi. There exists a Weil spectrum Di, an arrow

(Xi, sai)× (M ×Di, π1)
φi−→ (G, s)

and an arrow di : (Xi, sai) → (M × Di, π1) such that φ(1Xi , 0) = ai and

φ(1Xi , di) = bi. Then the data consisting of the cover (ιi)i∈I and for each i the

Weil spectrum Di, the arrow

φ′i = (Xi ×sci π1 (M ×Di), sciπ1)
(ciπ1,φi(π1,(sai,π2)))−−−−−−−−−−−−−→ (2×G, sπ1)

and the arrow

d′i = (Xi, sci)
(sci,π2di)−−−−−−→ (M ×Di, π1)

tells us that (c, a) ≈ (c, b). Indeed we have the equalities

φi(π1, (sai, π2π2)) ◦ (1Xi , (sci, π2di)) = φ(1Xi , (sai, π2di)) = φ(1Xi , di) = bi

φi(π1, (sai, π2π2)) ◦ (1Xi , (sci, π20)) = φ(1Xi , (sai, π20)) = φ(1Xi , 0) = ai

and

cιiπ1 ◦ (1Xi , (scιi, π2di)) = cιi1Xi = ci

whence (ci, ai) ≈ (ci, bi). But now the result follows from Lemma 2.2.15 by

applying µ.

Proposition 2.3.20. Let G be a groupoid in E with arrow space G and object

space M . Suppose further that G∞ is a groupoid. Then the relation ≈ is

symmetric on (G, s) in E/M .

Proof. Let a, b ∈(X,sa) (G, s) such that a ≈ b at stage of definition (X, sa).

Then a−1 ∈(X,ta) (G, s) has ta−1 = sa(= sb). So by Lemma 2.3.19 we have

that eta = aa−1 ≈ ba−1 at stage of definition (X, ta) and hence ba−1 ∈(X,ta)
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(G∞, s∞). Since G∞ is a groupoid we have that ab−1 ∈(X,ta) (G∞, t∞) also

and hence ab−1 ∈(X,tb) (G∞, s∞).

This means that etb ≈ ab−1 at stage of definition (X, tb). Now we note

that b ∈(X,sb) (G, s) has tb = setb = sab−1 and so by Lemma 2.3.19 again we

deduce that b ≈ ab−1b = a as required.

Now we give a counterexample which shows that we cannot immediately

specialise the jet part construction for categories to construct a jet part for an

arbitrary groupoid in E . We will use one of the simplest non-classical groupoids

we have at our disposal: the pair groupoid ∇D where D = {x ∈ R : x2 = 0}.
Using Lemma 2.3.18 we see that

(∇D)2∞ = {(a, b) ∈ D ×D : a ≈ b}

in E and so to show that (∇D)2∞ is not a groupoid it will suffice to show that

≈ is not symmetric on D in E . To prove this we will show that any jet starting

from the generalised element 1D must be trivial. The intuitive reason for this

is that D is not closed under addition and so there is no more ‘space’ for the

jet to move into.

Lemma 2.3.21. The relation ≈ is not symmetric on D.

Proof. Let us consider the generalised elements at stage D described by 0 :

D → D and 1D. It will suffice to show that 0 ∼ 1D but not 1D ≈ 0. To see

that 0 ∼ 1D we choose DW = D, φ = 1D and d = 1D. Then φ(0) = 0 and

φ(d) = 1D.

To show that 1D ≈ 0 does not hold it will suffice to show that for all

elements f such that 1D ∼ f then necessarily f = 1D. So let us suppose that

we have an f such that 1D ∼ f . Since the only covers of D are trivial this would

mean that there exist DW ∈ Spec(Weil), φ : D ×DW → D and d : D → DW

such that φ(x, 0) = x and φ(x, d(x)) = f(x) for all x ∈ D. Let w be the number

of indeterminates in the polynomial defining the Weil presentation W . Now in

a similar manner to Lemma 1.1.3 we use Hadamard’s Lemma twice and the

fact that D is defined by the formula x2 = 0 to see that

φ(x1, ~x) ∼= φ0(~x) + x1φ1(~x)
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for some smooth functions φ0, φ1 : Rw → R. Now the equation φ(a, 0) = a tells

us that

φ0(0) + x1φ1(0) = φ(x1, 0) = x1

and so φ0(0) = 0 and φ1(0) = 1. Hence by Hadamard’s Lemma we see that

φ1(~x) = 1 + Σw+1
i=2 xiψi(~x)

for some ψi : Rw → R. But since for all i there is an equality of the form

xkii = 0 in W we see that N = Σw+1
i=2 xiψi(~x) is nilpotent of degree n = Σw+1

i=2 ki.

(This follows from the pigeonhole principle.) Therefore the arrow

iφ = Σn−1
j=0 (−1)jNk : DW → D

is a pointwise multiplicative inverse for φ1. Now because φ has codomain D

we must have that

φ0(~x)2 + 2x1φ0(~x)φ1(~x) = φ(x1, ~x)2 = 0

and so φ0(~x)φ1(~x) = 0. But since φ1 has a pointwise multiplicative inverse this

means that φ0(~x) = 0 and so φ(x1, ~x) ∼= x1φ1(~x). Similarly we see that

d(x) ∼= ~a+~bx

where (ai + bix)ki = 0 when x2 = 0. But since ai ∈ R we see that ai = 0 and

hence

φ(x, d(x)) = x+ xΣw+1
i=2 d(x)iψi(d(x)) = x+ xΣw+1

i=2 bixψi(d(x)) = x

and we deduce that f = 1D as required.

Corollary 2.3.22. The jet part (∇D)∞ of the pair groupoid ∇D is not a

groupoid.

Proof. The result immediately follows from Lemma 2.3.21 and the remarks

preceding it.

Fortunately the condition that the relation ≈ is symmetric on (G, s) in

E/M is not only necessary but also sufficient to ensure that the jet part G∞ of

G is a groupoid.
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Lemma 2.3.23. Let a ∈ (G, s) such that esa ≈ a in (G, s). Suppose further

that ≈ is symmetric on (G, s). Then eta ≈ a−1 in (G, s).

Proof. Since ≈ is symmetric we have that a ≈ esa and ta−1 = sa. So by

Lemma 2.3.19 we have that eta ≈ a−1.

Lemma 2.3.24. Let a, b ∈ (G, s) such that a ≈ b in (G, s). Then a−1 ≈ b−1

in (G, t).

Proof. Immediate from Lemma 2.2.15.

Corollary 2.3.25. If ≈ is symmetric on (G, s) then the arrow

e∞ : (M, 1M )→ (G∞, t∞)

is jet dense.

Proof. Let a ∈ (G∞, t∞); by definition of G∞ this means that that esa ≈ a

in (G, s). Since ≈ is symmetric on (G, s) we have that eta ≈ a−1 and then

eta ≈ a in (G, t) from Lemmas 2.3.23 and 2.3.23 respectively. Hence the arrow

e∞ : (M, 1M )→ (G∞, t∞) is jet dense as required.

Proposition 2.3.26. Let G be a groupoid in E such that the relation ≈ is

symmetric on the object (G∞, s∞) in E/M . Then the jet part G∞ can be given

the structure of a groupoid.

Proof. By Corollary 2.3.25 we see that the left arrow in the square

(M, 1M ) (G∞, s∞)

(G∞, t∞) (G, s)

e∞

e∞

ι∞iG∞

iGι∞

is jet dense. This means that there is an unique filler iG∞ which we will take

as the inverse for the jet part G∞. Since the equations s∞iG∞ = t∞ and

t∞iG∞ = s∞ are immediately seen to hold it remains to check that the inverse

axioms hold. So observe that in the diagram:

(G∞, s∞) (2∗G∞, s∞π1) (G∞, s∞)

(G, s) (2∗G, sπ1) (G, s)

ι∞

(1G∞ ,iG∞ )

2∗ι∞

µ∞

ι∞

(1G,iG) µ
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the right-hand square commutes by the definition of µ∞ in Definition 2.3.10

and the left-hand square commutes by the definition of iG∞ above. But now

we notice that the bottom row is equal to 1G because iG is an inverse for

the multiplication µ; hence the top row is equal to 1G∞ because ι∞ is monic.

Similarly the diagram

(G∞, s∞) (2∗G∞, s∞π1) (G∞, s∞)

(G, s) (2∗G, sπ1) (G, s)

ι∞

(iG∞ ,1G∞ )

2∗ι∞

µ∞

ι∞

(iG,1G) µ

shows that the other inverse axiom holds.

2.3.3 The Integral Factorisation System

We will define the integral factorisation system for categories in E but to

motivate its introduction let us first consider a little of the classical theory of

Lie groupoids. In Lie theory we have a situation where the arrows infinitesimally

close to the identity arrows completely determine all the rest of the arrows. For

this to be possible we must have a method of constructing macroscopic data

from infinitesimal data. As a first attempt we will use the arrows infinitesimally

close to the identity arrows to determine a vector field and appeal to a theorem

asserting the local existence of solutions to vector fields.

Let us see how this would work out in the classical case. Fix a Lie groupoid

G in the category Man with base space M and structure maps s, t and e.

A time-dependent left-invariant vector field on G is one which is completely

determined by a collection of vectors (vx(a))x∈M depending smoothly on a

time parameter a ∈ I where each vx(a) is based at ex and tangent to the

submanifold s−1x. The value of the vector field at a non-identity element

f : x→ y is given by

(dLf )vy(a)

where Lf : s−1(y)→ s−1(x) is precomposition and d denotes the derivative. In

classical differential geometry a solution to this vector field is simply a solution

γ : I → G to the differential equation

γ′(a) = (dLγ(a))vtγ(a)(a)
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Let us now think about integrating such a vector field in terms of synthetic

differential geometry. For each x ∈M we think of vx(a) as an infinitesimally

small arrow with source x. For our solution we would like a source constant

arrow ψ1 : I → G satisfying

ψ1(a+ d) = vtψ1(a)(a) ◦ ψ1(a) (2.5)

for all a ∈ I and all d ∈ D and ψ(0) = 1x. Thus at time a we can see that the

target of the arrow ψ(a) that we start with influences the arrow vtψ(a)(a) that

we want to postcompose with.

This observation suggests that the integration may be broken down into

two steps. The first step integrates the vector field dt(vy(a)) on the base space

M to a path ψ0 : I →M . At this point we can throw away all of the vectors

vy(a) apart from those of the form vψ0(a)(a). The second step integrates these

vψ0(a)(a) to obtain a path ψ1 : I → G. However at this point we notice that

the result of the first step can in fact be expressed in terms of infinitesimal data

if we use jet groupoids (in the classical case Lie algebroids are used) rather

than vector fields. This idea is made concrete in the following definition.

Definition 2.3.27. An A-path in a groupoid G in E is a groupoid homomor-

phism φ : (∇I)∞ → G.

Remark 2.3.28. The notion of A-path is a well-known one in the theory of

Lie groupoids and we will see in Chapter 5 that our definition coincides with

the classical one.

A groupoid homomorphism φ : (∇I)∞ → G corresponding to a vector field

vy(a) would have underlying path φ0 = ψ0 and φ(a→ a+d) would pick out the

infinitesimal arrow corresponding to the tangent vector vψ0(a)(a). Therefore

finding a solution ψ now amounts to solving

ψ(a+ d) = φ(a→ a+ d) ◦ ψ(a)

and hence we assert that the integral of the A-path φ should be a groupoid

homomorphism ψ : ∇I → G such that the diagram

(∇I)∞ G

∇I

ι∞

φ

ψ
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commutes.

In fact we can work with categories rather than groupoids by replacing the

arrow ι∞ : ∇I∞ → ∇I with the arrow ι∞ : I∞ → I. We define the integral

factorisation system by using the arrow ι∞ to generate the left class and

then define a natural completion operation. A standard categorical argument

(see Section 2 of [6]) shows that the subcategory defined as the image of this

completion operation is a reflective subcategory of Cat(E). It consists of all

the categories C for which every A-path admits a unique integral.

Definition 2.3.29. Let Σ be the singleton class of arrows in Cat(E) given by

Σ := {ι∞ : I∞
ι∞−−→ I}

then the integral factorisation system is the Cat(E)-factorisation system

(Lint, Rint) = (Sat(Σ̃ ∪ δo(Σ̃)),Σ⊥V )

on Cat(E) that is generated using Corollary 2.1.40. Note that Cat(E) is locally

presentable so the conditions of Corollary 2.1.40 are satisfied.

To put this in more concrete terms: an arrow r : X → Y is in the right

class Rint (and is called integral closed) iff the following square is a pullback of

categories:

XI XI∞

YI YI∞

rI

Xι∞

rL∞

Yι∞

and an arrow l : A→ B is in the left class Lint iff for all r ∈ Rint the following

square is a pullback:

XB XA

YB YA

rB

Xl

rA

Yl

Definition 2.3.30. The integral completion Cint of a category C is the medi-

tating object of the integral factorisation of the unique arrow ! : C→ 1:

C 1

Cint

!

τ !
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An integral complete category is a category C for which τ : C → Cint is

an isomorphism and we write Catint(E) for the full subcategory on integral

complete categories.

Lemma 2.3.31. The function (−)int : Cat(E) → Catint(E) extends to a

functor.

Proof. This is immediate by functoriality of factorisation.

Proposition 2.3.32. We have an adjunction (−)int a k where k is the full

inclusion Catint(E) ↪→ Cat(E). In other words Catint(E) is a reflective subcat-

egory of Cat(E).

Proof. Let C be an arbitrary category in E . Then we define the unit η by

ηC = τC : C→ Cint. Let X be a integral complete category; this means that

the arrow τX : X → Xint is an isomorphism. So we define the counit ε by

εX = (τX)−1. Then ε(Cint) ◦ (ηC)int = (τCint)−1 ◦ (τC)int and k(εX) ◦ ηk(X) =

k((τX)−1) ◦ τk(X) = 1k(X). But we defined (τC)int as the unique filler of the

Diagram

C Cint 1

Cint (Cint)int 1

τC

τC

(τC)int

!

11

τCint !

but since τCint can fill this diagram also we see that (τCint)−1 ◦ (τC)int = 1Cint

as required.

Remark 2.3.33. It is routine to modify the definitions of integral factorisa-

tion system on Cat(E) and integral complete category to obtain an integral

factorisation system on Gpd(E) and a definition of integral complete groupoid.

We now give a summary of the results.

Definition 2.3.34. Let Σ be the singleton class of arrows in Gpd(E) given by

Σ := {ι∞ : (∇I)∞
ι∞−−→ (∇I)}

then the integral factorisation system is the Gpd(E)-factorisation system

(Lint, Rint) = (Sat(Σ̃ ∪ δo(Σ̃)),Σ⊥V )

on Gpd(E) that is generated using Corollary 2.1.40.
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Definition 2.3.35. The integral completion Gint of a groupoid G is the

meditating object of the integral factorisation of the unique arrow ! : G→ 1:

G 1

Gint

!

τ !

An integral complete groupoid is a category G for which τ : G → Gint is

an isomorphism and we write Gpdint(E) for the full subcategory on integral

complete groupoids.

Proposition 2.3.36. The full subcategory Gpdint(E) ⊂ Gpd(E) on integral

complete groupoids is a reflective subcategory.



Chapter 3

Paths in Categories

The method that will be used in the proof of the synthetic version of Lie’s

second theorem is an axiomatisation and generalisation of an established proof

in classical Lie theory. The central idea of this proof is to establish a relationship

between paths in the Lie group G starting at the identity element e and paths

in the Lie algebra g. We will always assume that our paths are smooth maps.

To obtain a path δ ∈ gI from a path γ ∈ GI with γ(0) = e we take the tangent

vectors γ′(a) for a ∈ I and use the derivative of left multiplication by γ(a)−1

to map them to the origin

δ(a) = (DLγ(a)−1)γ(a)γ
′(a)

In the other direction if we are given δ ∈ gI we obtain an element γ ∈ GI by

solving the differential equation

γ′(a) = (DLγ(a))eδ(a)

where we have that γ(0) = e by construction. Furthermore in addition to being

able to describe the elements of GI in terms of elements of gI we can also

describe the homotopies between elements of GI using only infinitesimal linear

data contained in the Lie algebra g. The proof is finished by observing that

homotopy classes of paths in a simply connected Lie group G starting at e are

in bijection with elements of G. An advantage of this proof is that it makes

clear where the condition that the Lie group is simply connected is used. The

full details can be found in [22] and an accessible explanation is in Chapter 5

of the Lie Groups section of [5].

85
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We now describe an established generalisation of the above ideas to the

theory of Lie groupoids. Given a Lie groupoid G with source map s : G→M

we define the set of G-paths to be

Path(G) = {γ ∈ GI : ∀a ∈ I. (sγ(a) = sγ(0)) ∧ (γ(0) = esγ(0))}

and given a Lie algebroid π : E → M with anchor ρ we define the set of

E-paths to be

Path(E) = {δ ∈ EI : ∀a ∈ I. ρδ(a) =
d

da
πδ(a)}

Then we can establish a bijection between Path(G) and Path(g) in the case

that g is the Lie algebroid of G. Similarly one can show that the natural

homotopy relation on Path(G) can be described in terms of a relation R on

Path(g). Therefore we can form a groupoid W (g) that has arrow space defined

by the quotient

Path(g)/R

The details can be found in the paper [7]. The bijection between Path(G)

and Path(g) is Proposition 1.1. The groupoid W (g) is called the Weinstein

groupoid and is its construction given in Section 2.1.

In this chapter we will transfer this theory to the setting where we compare

integral complete categories in some well-adapted model of synthetic differential

geometry E with jet categories in E . This requires us to identify appropriate

notions of connectedness for categories in E and describe a smooth concatenation

operation. The notion corresponding to a G-path is simply an internal functor

I→ C and the theory proceeds in an analogous fashion to the classical case. We

obtain a path category analogous to the path groupoid of elementary topology

in Section 3.4. The constructions corresponding to the Weinstein groupoid

however permit some simplification. We exploit the existence of infinitesimal

arrows to define the notion corresponding to a g path as an internal functor

I∞ → C

where I∞ is the jet part of I as defined in Section 2.3.2. This means that in

Section 3.5 we can define the Weinstein category of an arbitrary category C in

E .
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In the proof of Lie’s second theorem that we give in Chapter 4 it will be

convenient to work with the various notions of path directly rather than as

equivalence classes of paths. To do this will require us to define a certain type

of algebraic theory that we will call the theory of precategories.

3.1 Precategories and their Quotient Categories

Recall that for a topological space X we may form its path space XI and define a

concatenation operation µ : XI +1 0I → XI using a continuous reparametrisation

map I → I +1 0 I. In general this will not give the space XI the structure of a

groupoid because it will not in general be possible to choose µ to be associative.

All the different n-fold composites are however homotopic and so if we take

the quotient of XI by identifying all paths that are homotopic (with fixed

endpoints) then we do obtain a groupoid.

The corresponding problem must be solved in the analogous situation in

which I replaces I and Cat(E) replaces Top. However in the sequel it will be

convenient to delay taking the quotient described above in order to compute

a certain pullback in terms of paths rather than equivalence classes of paths.

Therefore in Section 3.3 we define an operation µ : C2∗I → C that exhibits

CI as a model of a certain algebraic theory that we will call the theory of

precategories. Intuitively a precategory is a reflexive graph

C M
s

e

t

that has an operation µ : C ×t s C → C which is only a composition operation

up to certain equivalence relations. To decide which arrows get identified the

definition of precategory includes in addition the data of another reflexive

graph

R C
r1

c

r2

and we assert that if f, g ∈ C such that sf = sg and tf = tg then f is

equivalent to g iff there exists an r ∈ R such that r1r = f and r2r = g.

In this section we give the abstract definition of a precategory and a general

quotienting procedure to obtain a category from a precategory. At the end we
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give the appropriate commutative diagrams that show that in the situation in

which ∇I, rather than I, replaces I and Gpd(E), rather than Cat(E), replaces

Top we can define pregroupoids and their quotients in a similar manner.

Notation 3.1.1. Recall that we write n×C = C ×t s ... ×t s C. For an arrow

f : C → D then we write n×f for the induced arrow n×C → n×D.

Definition 3.1.2. The category G is the finitely complete category freely

generated by the arrows

R C M
r1

c

r2

s

e

t

satisfying the usual relations for a truncated globular object: se = 1M = te,

r1c = 1G = r2c, sr1 = sr2 and tr1 = tr2.

Definition 3.1.3. The category Pre is the finitely complete category freely

generated from G by adding arrows m, n, a, λ and ρ that satisfy the equations

sm = sπ1 and tm = tπ2 (where π1 and π2 are the pullback projections

2×C → C) and that make the diagrams

R ×r1t r2s R 2×C

R C

n

(r1π1,r1π2)

(r2π1,r2π2)
m

r1

r2

,

3×C

R C

m(1×m)m(m×1)

a

r1

r2

,

C

R C

m(1×e)1C
λ

r1

r2

and

C

R C

m(e×1)1C
ρ

r1

r2

serially commutative.

Definition 3.1.4. A precategory in E is a finite limit preserving functor

Pre → E . The category of precategories in E is the category [Pre, E ]lex and

will sometimes be written PreCat(E). Here the subscript lex indicates that

we consider only functors that preserve finite limits.

Now we describe how to form a category from a precategory by identifying

all the arrows f, g ∈ C for which there exists r ∈ R such that r1r = f and

r2r = g.
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Definition 3.1.5. Let F : Pre→ E be a precategory in E . Then the quotient

reflexive graph F of F is the reflexive graph in E that has object space F (M),

arrow space F̄ defined by the coequaliser

FR FC F
Fr1

Fr2

q

and reflexive graph structure s, t and e given by the factorisations of Fs, Ft

and Fe through the coequaliser defining F

FR FC F

FM M FM

Fr1

Fr2
Ftr1Fsr1

q

F tFs tsFce
1FM

1FM

Fe

1FM

e

Lemma 3.1.6. Let F be a precategory in E. Let n×C = C ×s t C ×s t ... ×s t C

where there are n copies on the right hand side. Similarly for n×F̄ , n×R and

n×q. Then

n×FR n×FC n×F̄
n×Fr1

n×Fr2

n×q

is a coequaliser in E.

Proof. First observe that

FR FC F̄
Fr1

Fr2

Fc
q

is a reflexive coequaliser. Therefore

FR FC F

FM FM FM

Fr1

Fr2
Fsr1

q

Fs s
1FM

1FM

1FM

is a reflexive coequaliser in E/M . The same is true if we replace s with t and

s̄ with t̄. Now since reflexive coequalisers commute with products we deduce

that

2×FR 2×FC 2×F

FM FM FM

2×Fr1

2×Fr2
π2Fsr1

2×q

π2Fs π2s
1FM

1FM

1FM
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is a reflexive coequaliser in E/M and finally that the top line is a reflexive

coequaliser in E . The required result follows by an easy induction.

Lemma 3.1.7. Let F be a precategory in E and F be its quotient reflexive graph.

Then the arrow m defined by the factorisation of m through the coequaliser

2×FR 2×FC 2×F

FR FC F

2×Fr1

2×Fr2

2×q

n

Fr1

Fr2

m

q

m

is a well defined composition on F . When F is equipped with this composition

we call it the quotient category of the precategory F .

Proof. The associativity and unit axioms are deduced easily from the cor-

responding diagrams in Definition 3.1.4. The composition m is associative

because

3×FC 3×F

FR FC F

Fa

3×q

Fr1

Fr2

Fm(1×Fm)Fm(Fm×1)

q

m(m×1)m(1×m)

is serially commutative and 3×q is an epimorphism. The unit axioms hold

because

FC F

FR FC F

Fλ

q

Fr1

Fr2

1FCFm(1×Fe)
q

1Fm(1×e)

and

FC F

FR FC F̄

Fρ

q

Fr1

Fr2

1FCFm(Fe×1)

q

1Fm(e×1)

are serially commutative and q is an epimorphism.

Corollary 3.1.8. The function (−) extends to a functor

PreCat(E)→ Cat(E)
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Proof. Let F,K : Pre→ E be precategories in E and f : F ⇒ K be a natural

transformation between them. We will show that (f̄ , fM ) is an internal functor

where f̄ is defined as the following factorisation

FR FC F

KR KC K

fR

Fr1

Fr2
fC

q

f

Kr1

Kr2

q

Since f is a natural transformation in particular we have that

F (2×C) K(2×C)

FC KC

Fm

(fCπ1,fCπ2)

Km

fC

and

FC KC

FM KM

Fs Fe Ft

fC

Ks Ke Kt

fM

are (serially) commutative. But this means that the inner squares of

2×F 2×K

2×FC 2×KC

FC KC

F K

m

(fπ1,fπ2)

m

(fCπ1,fCπ2)

Fm

2∗q

Km

2∗q

fC

q

q

f

and

F K

FC KC

FM KM

FM KM

s e t

f

s e t

q

Fs Fe Ft

fG

q

Ks Ke Kt

q

fM

q

fM



92 CHAPTER 3. PATHS IN CATEGORIES

are (serially) commutative. But now we see that the outer squares commute due

to the top left diagonal arrow being an epimorphism. Hence (f, fM ) : F → K

is an internal functor. The functor preserves composition because of the

uniqueness of factorisation through the colimit defining F .

Remark 3.1.9. The functor (−) is left adjoint to the natural inclusion

Cat(E)
y−→ PreCat(E)

which will be described in more detail in Definition 3.4.5.

Remark 3.1.10. It is routine to specialise the precategory construction to a

‘pregroupoid’ construction. In the remainder of this subsection we sketch the

details.

Definition 3.1.11. The category Pre′ is generated from the category Pre by

adjoining arrows iC , iR, I1 and I2 such that the equations siC = t and tiC = s

hold and the diagrams

R C

R C

iR

r1

r2
iC

r1

r2

C

R C

m(iC×1)es
I1

r1

r2

and

C

R C

m(1×iC)et
I2

r1

r2

are serially commutative.

Definition 3.1.12. A pregroupoid in E is a finite limit preserving functor

Pre → E . The category of pregroupoids in E is the category [Pre, E ]lex and

will sometimes be written PreGpd(E). Here the subscript lex indicates that

we consider only functors that preserve finite limits.

Lemma 3.1.13. Let F be a pregroupoid in E and F be the quotient category

of the underlying precategory of F . Then using the arrow iF induced by the

factorisation

FR FC F

FR FC F

Fr1

Fr2

q

F iR
Fr1

Fr2

FiC

q

iF
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as the inverse map makes F into a groupoid in E.

Proof. Given the work in Corollary 3.1.8, it suffices to observe that the diagrams

FC F

FR FC F

FI1

q

Fr1

Fr2

FesFm(1×iC)

q

esm(1×iF )

and

FC F

FR FC F

FI2

q

Fr1

Fr2

FetFm(iC×1)

q

etm(iF×1)

are serially commutative.

Now the following proposition follows immediately.

Proposition 3.1.14. The function (−) extends to a functor PreGpd(E) →
Gpd(E).

Remark 3.1.15. The functor (−) is left adjoint to the natural inclusion

Gpd(E)
y−→ PreGpd(E)

3.2 Concatenation

In order to define the path and Weinstein precategories that follow it will be

necessary to define a way of concatenating paths. We will do this by defining an

arrow µ : I→ 2∗I where 2∗I is the pushout I +1 0 I in Cat(E). We think of 2∗I
as the representing category for composable paths and so for our concatenation

µ to make sense we require that µ(l) = ι2l ◦ ι1l where l is the long arrow 0→ 1

in I. First we show that the pushout 2∗I in Cat(E) is in fact a preorder and

hence that any arrow I→ 2∗I is determined by its object map I → 2∗I where

2∗I is the pushout I +1 0 I. Then we simplify the problem of mapping into

this pushout by carving 2∗I out as a subobject of the product I × I. Finally

it is easy to construct an appropriate smooth function I → I × I that factors

through this subobject.
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Notation 3.2.1. For a category C in E and a global element ∗ : 1 → M we

write 2∗C for the pushout C +∗ ∗ C in Cat(E). In the special case when C = I
we modify this notation slightly so that it is easier to write iterated pushouts.

Therefore we write n∗I for the n-fold pushout I +1 0 ... +1 0 I.

Let C be one of the categories CW , Cjet, Cfp or Cgerm defined in Section 1.1

and E be the well-adapted model that is constructed C by taking sheaves with

respect to the Dubuc coverage. It will be convenient to have a way of relating

E to the category of presheaves on C so we recall Theorem 1 from Section III.5

of [23]:

Theorem 3.2.2. The inclusion functor j : E � [Cop, Set] has a left adjoint

a : [Cop, Set]→ E

called the associated sheaf functor. Moreover, this functor a commutes with

finite limits.

Corollary 3.2.3. There is an adjunction

[Cop, Cat] Cat(E)

A

⊥

J

such that A preserves finite limits as well as all colimits.

Lemma 3.2.4. Let C be a category in E. Then C is a preorder iff JC is a

preorder. Let D be in [Cop, Cat]. Then D is a preorder iff AD is a preorder.

Proof. Both j and a preserve products and take monomorphisms to monomor-

phisms.

Lemma 3.2.5. For any preorder C in Cat(E) defined by C � M ×M and

global element ∗ : 1→M we have that 2∗C is a preorder.

Proof. By Lemma 3.2.4 the hypothesis that C is a preorder implies that JC
is a preorder. Now 2∗(JC) is a preorder in [Cop, Cat] because pushouts are

computed componentwise and the corresponding result is easily checked to

hold in Cat. Hence by Lemma 3.2.4 and the fact that A preserves colimits we

see that

A(2∗JC) ∼= 2∗C
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is a preorder as required.

In order to ensure that the concatenation operation is sufficiently smooth

we will need a smooth step function R→ R which takes the value 0 for x < 0

and 1 for x > 1.

Definition 3.2.6. Let
∫

, exp denote the classical integral and exponential

function respectively. Then we define the smooth function

δ′ : R→ R

x 7→


∫ x
0 exp( −t

1−t )dt∫ 1
0 exp(

−t
1−t )dt

if x > 0

0 otherwise

Remark 3.2.7. Applying the full and faithful embedding ι : Man→ E to δ′

gives us an arrow δ : R→ R in E .

Lemma 3.2.8. Let ν : I → I × I be an arrow in E. Then ν induces an arrow

I → 2∗I iff there exists a cover

A
a−→ I

b←− B

of I such that ν ◦ a factors through (1I , {0}) and ν ◦ b factors through ({1}, 1I).

Proof. First observe that in the diagram

{(1, 0)} {1} × I

I × {0} {(x, y) : (y = 0) ∨ (x = 1)}

I × I

m

the outer square is a pullback and the top left square is a pushout-pullback.

Then using the evident isomorphisms I × {0} ∼= I ∼= {1} × I and {(1, 0)} ∼= 1

we find that {(x, y) : (y = 0) ∨ (x = 1)} ∼= I +0 1 I.

Now the result follows immediately from the characterisation of disjunction

in the Kripke-Joyal semantics of the topos. See for example Theorem 1 (ii) in

Part VI.6 of [23].
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In the following result let ≤2∗I be the order relation on 2∗I corresponding

to 2∗I.

Corollary 3.2.9. Let a : I → I be defined by u 7→ 3
4u and b : I → I be defined

by u 7→ 1
4 + 3

4u. Let ν : I → I × I be induced by the pair (δ(8x), δ(8x − 7)).

Then there exists a µ : I → 2∗I such that ν = m◦µ, the proposition x ≤ x′ =⇒
µ(x) ≤2∗I µ(x′) holds and µ(0) = 0 and µ(1) = 1.

Proof. We need to check the conditions of Lemma 3.2.8. Clearly a and b are

jointly epimorphic. Also ν ◦a always has second component 0 because δ(8x−7)

is 0 for x < 7
8 . Finally ν ◦ b always has first component 1 because δ(8x) is

1 for x > 1
8 . Since δ is monotone the inequality x ≤ x′ implies that both

δ(8x) ≤ δ(8x′) and δ(8x − 7) ≤ δ(8x′ − 7). Hence x ≤ x′ < 3
4 implies that

µ(x) ≤2∗I µ(x′) and 1
4 < x ≤ x′ implies that µ(x) ≤2∗I µ(x′) as required.

Corollary 3.2.10. The arrow µ induces a functor µ : I → 2∗I such that

µ(l) = ι2l ◦ ι1l where l is the long arrow 0→ 1 in I.

Remark 3.2.11. If we instead want to produce a groupoid homomorphism

µ : ∇I → 2∗∇I we use the same arguments as above but replace Cat(E) by

Gpd(E), L by CI (and hence I by ∇I). An easy adaptation of Lemma 3.2.5

shows that 2∗∇I ∼= ∇(2∗I) and so in this situation it is not necessary to

consider any order relation and it will again suffice to give an arrow I → 2∗I

as furnished by Corollary 3.2.9.

Corollary 3.2.12. There exists a groupoid homomorphism µ : ∇I → 2∗∇I
such that µ(l) = ι2l ◦ ι1l.

3.3 Connectedness of Categories

Recall that in classical Lie theory we have an equivalence of categories between

the category of Lie algebras and the category of simply connected Lie groups.

To see why we must impose the condition of path connectivity consider a Lie

group G which we can decompose into two connected components G = G1qG2.

Without loss of generality we may suppose that e ∈ G1 which would mean that

the Lie algebras of G and G1 are identical. But there is no isomorphism between
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G and G1 in LieGp. We can make a similar argument to see that it is essential

to impose the condition that the Lie groups are simply connected. Consider

a Lie group H which is not simply connected and hence is not isomorphic to

its universal covering space UH in LieGp. However we now observe that the

covering projection p : UH → H is a local diffeomorphism and hence the Lie

algebras of H and UH are the same.

In the situation where the base space is not a singleton and we allow non-

invertible arrows we encounter precisely the same problem. (Although in this

case solving this problem is not enough to ensure that we get an equivalence of

categories.) Therefore in this section we will identify conditions on categories

in E that will be the counterparts of imposing the conditions of path and

simply connectedness on Lie groups. Then we show that the representing

object for n-fold composition n∗I is simply connected. This result will be used

to obtain the associativity and unit arrows of the path precategory formed in

the following section.

Recall that a topological space X is path connected iff it satisfies the

following weak lifting property: for all pairs of points (x, y) ∈ X ×X there

exists a path γ such that the following diagram

1 + 1 X

I

(0,1)

(x,y)

γ

commutes. We can rephrase this as the statement: the arrow

XI X(0,1)

−−−−→ X1+1

is an epimorphism in Set. Recall further that a Lie groupoid G is s-path

connected iff each of the source fibres s−1M are path connected in Man. Using

Lemma 5.1.2 we see that a Lie groupoid is s-path connected iff the arrow

G∇I Gl−→ G2

is an epimorphism in Set. The only modification to this definition that we will

make is to insist that the arrow Gl is not only an epimorphism in Set but also

an epimorphism in E . Besides being a more natural condition when working
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internally in E this will be required for the proof of Lie’s second theorem; we

eventually need to produce an arrow between two objects in E not just one

between the sets of global sections.

Definition 3.3.1. A object X ∈ E is path connected iff the arrow

XI X(0,1)

−−−−→ X1+1

is an epimorphism in E .

Definition 3.3.2. A groupoid G in E is path connected iff the arrow

G∇I Gl−→ G2

is an epimorphism in E .

The next Lemma relates path connected objects of E and path connected

groupoids in Gpd(E).

Lemma 3.3.3. If X is path connected in E then ∇X is path connected in

Gpd(E).

Proof. The result follows immediately from Lemma 5.1.2 and the isomorphism

∇B∇A ∼= BA.

For our definition of path connected category we will take the definition of

path connected groupoid and replace ∇I with I.

Definition 3.3.4. A category C in E is path connected iff the arrow

CI Cl−→ C2

is an epimorphism in E .

In order to write down the definition of simply connected category we will

need to define two additional categories: one to be the representing object for

homotopies with fixed endpoints and the other to be its boundary.

Definition 3.3.5. The category O in E is the pushout of l : 2→ I along itself:

2 I

I O

l

l

ι1

ι2
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in Cat(E). Note that the space of objects Ω of O is the pushout

1 + 1 I

I Ω

(0,1)

(0,1)

in E .

Remark 3.3.6. The space Ω is representable in E . To see this consider the

closed subset Ω2 of R2 that consists of all the pairs (x, y) ∈ I2 such that the

proposition

(y = sin(x)) ∨ (y = −sin(x))

holds. Since the curves y = sin(x) and y = −sin(x) are transversal at (0, 0)

and (1, 0) we see that giving a smooth function f : Ω2 → R is the same as

giving a pair of smooth functions (f1, f2) : I → R such that f1(0) = f2(0) and

f1(1) = f2(1). Hence

[2,m0
1+1] [2,m0

I ]

[2,m0
I ] [2,m0

Ω2
]

is a pushout in Cpt where m0
X is the ideal of all smooth functions vanishing on

X. Therefore Ω is represented by [2,m0
Ω2

] in E .

Definition 3.3.7. For any category C in E and arrow f : 2→ C the category

Of
C is the pushout

2× C C× C

2 Of
C

π1

f×1I

qfC

in Cat(E). In the case that C = I and f = l : 2→ I we will write simply O for

Ol
I. Note that the space of objects of O is given by the pushout

I + I I × I

1 + 1 B

(u1,u2)

((0,1I),(1,1I))

q
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where u1 and u2 are the coproduct inclusions and in turn B is isomorphic to

the colimit of the diagram

1
!←− I (0,1I)−−−→ I × I (1,1I)←−−− I !−→ 1

in E .

Remark 3.3.8. Note that we could have defined the category O as the pushout

(1 + 1)× 2 (1 + 1)× I

2 O

π2

(1+1)×l

and so the arrow (0, 1) : (1 + 1)→ I induces the boundary inclusion ι : O → O.

Before we define a simply connected category we prove that when the

category C is a preorder then the category OC is a preorder also.

Lemma 3.3.9. The category OC is a preorder when the category C is a

preorder.

Proof. Let j, a, J and A be the functors of Theorem 3.2.2 and Corollary 3.2.3.

Since j preserves limits the category JC is in fact a preorder and J(C× C) ∼=
JC×JC. Then it is easy to see that in [Cop, Cat] the pushout 2+2×JC(JC×JC)

is a preorder. Since A preserves finite limits and all colimits by Lemma 3.2.4

we have that

A(2+2×JC(JC× JC)) ∼= 2+2×JC(JC× JC) ∼= OC

is a preorder as required.

In Lemma 5.1.2 we see that maps ∇B → G in Gpd(E) are the same as

maps ψ : B → G in E that are source constant and have ψ(0, 0) = esψ(0, 0).

Hence ∇B is the representing object for source constant homotopies in G with

fixed endpoints. This motivates the following definition which generalises the

definition of source simply connected Lie groupoid found in classical multi-

object Lie theory by replacing ∇B with O and Set with E .
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Definition 3.3.10. A category C is simply connected iff C is path connected

and the arrow

CO Cι−→ CO

is an epimorphism in E .

Lemma 3.3.11. Let C be a simply connected category via the epimorphisms

m : CO � CO and a : CI � C2. Let D be a simply connected category via the

epimorphisms n : DO � DO and b : DI � D2. Then C×D is simply connected.

Proof. The arrows

(C× D)I ∼= CI × DI a×b−−→ C2 × D2 ∼= (C× D)2

and

(C× D)O ∼= CO × DO m×n−−−→ CO × DO ∼= (C× D)O

are epimorphisms exhibiting C× D as simply connected.

Lemma 3.3.12. The category n∗I is path connected.

Proof. We need to show that the arrow

(n∗I)I
(n∗I)l−−−→ (n∗I)2

is an epimorphism in E . By iterating Lemma 3.2.5 we see that n∗I is a preorder

and so the arrow (s, t) : (n∗I)2 � (n∗I)2 is a monomorphism. Hence all

internal functors into n∗I are completely determined by the object map. Let

≤n∗I be the order induced on n∗I by n∗I. This means that

(n∗I)I = {φ ∈ (n∗I)I : ∀a, a′ ∈ I. a ≤ a′ =⇒ φ(a) ≤n∗I φ(a′)}

and

(n∗I)2 = {(x, y) ∈ (n∗I)2 : x ≤n∗I y}

Therefore it will suffice to show that the proposition

∀(x, y) ∈ (n∗I)2. ∃ψ ∈ (n∗I)I . (ψ(0) = x) ∧ (ψ(1) = y)

holds in the internal logic of E and that whenever x ≤n∗I y we can choose ψ

to lie in (n∗I)I. So let (x, y) ∈ (n∗I)2 with x in the ith summand and y in the
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jth summand for i, j ∈ {1, ..., n} and i ≤ j. First we consider the case i = j.

Then we can choose ψ = ιiψ
′ where ψ′ : I → I is defined by

ψ′(a) = (1− a)xi + ayi

where ιixi = x and ιiyi = y. Second we consider the case i < j. Then we

choose ψ to be the concatenation (using the µ of Corollary 3.2.9) of the paths

ιiψi, ιi+1ψi+1,...,ιjψj where ψi,...,ψj are defined as follows.

ψi(a) = (1− a)xi + a , ψj(a) = ayj

and ψk = 1I for all k ∈ {i + 1, ..., j − 1} where ιixi = x and ιjyj = y. By

construction the ψ produced in both cases does indeed satisfy the proposition

∀a, a′ ∈ I. a ≤ a′ =⇒ φ(a) ≤n∗I φ(a′)

provided that x ≤n∗I y.

Lemma 3.3.13. The category n∗I is simply connected.

Proof. We will prove the case n = 3. The general case is more difficult only in

terms of notation. Given Lemma 3.3.12 it suffices to show that the arrow

(3∗I)O
(3∗I)ι−−−→ (3∗I)O

is an epimorphism in E . First we note that because 3∗I is a preorder the arrow

(s, t) : (3∗I)2 � (3∗I)2 is a monomorphism and hence all internal functors

into 3∗I are completely determined by the object map. Let ≤3∗I be the order

induced on 3∗I by 3∗I. Then

(3∗I)O = {ψ ∈ (3∗I)B : ∀a, a′ ∈ B. a1 ≤ a′1 =⇒ ψ(a) ≤3∗I ψ(a′)}

and

(3∗I)O = {φ ∈ (3∗I)Ω : ∀a, a′ ∈ Ω. a1 ≤ a′1 =⇒ φ(a) ≤3∗I φ(a′)}

Second we note that we can carve out 3∗I as a subobject of I3:

3∗I = {(a, b, c) : (b = c = 0) ∨ ((a = 1) ∧ (c = 0)) ∨ (a = b = 1)} ν−→ I3
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Therefore it will suffice to show that the proposition

∀φ ∈ (I3)Ω. ∃ψ ∈ (I3)B. ψ ◦ ι = φ

holds in the internal logic of E and that whenever φ factors through 3∗I and

preserves the order, we can choose a filler ψ that factors through 3∗I and

preserves the order also.

So let φ ∈ (I3)Ω such that

(φ2 = φ3 = 0) ∨ ((φ1 = 1) ∧ (φ3 = 0)) ∨ (φ1 = φ2 = 1)

and

∀x, x′ ∈ Ω. x1 ≤ x′1 =⇒ φ(x) ≤3∗I φ(x′)

hold. Then define ψ ∈ (I3)I×I by

ψi(x1, x2) = x2δi(x1) + (1− x2)γi(x1)

for i ∈ {1, 2, 3} and where φi = (δi, γi). Now ψ satisfies the equations F (0, x2) =

F (0, 0) and F (1, x2) = F (1, 0) for all x2 because δi(0) = γi(0) and δi(1) = γi(1).

Hence ψ induces a well defined arrow out of B. In addition φi = 0 implies that

δi = 0 = γi so the proposition

(ψ2 = ψ3 = 0) ∨ ((ψ1 = 1) ∧ (ψ3 = 0)) ∨ (ψ1 = ψ2 = 1)

holds. Finally φ(x1, x2) ≤3∗I φ(x′1, x
′
2) and φ(x1,−x2) ≤3∗I φ(x′1,−x′2) to-

gether imply that δ(x1) ≤ δ(x′1) and γ(x1) ≤ γ(x′1) and so the proposition

(∀a, a′ ∈ B)a1 ≤ a′1 =⇒ ψ(a) ≤3∗I ψ(a′)

holds also as required.

Remark 3.3.14. If we replace Cat(E) with Gpd(E) and I with ∇I the theory

goes through in the same manner except that we do not need to consider

the order relations. Thus we obtain definitions of path and simply connected

groupoids qua groupoids and the following result.

Proposition 3.3.15. The groupoid n∗∇I is simply connected as a groupoid.
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3.4 The Path Category and Precategory

In the proof of Lie’s second theorem in Chapter 4 our strategy will be to

transfer a certain lifting problem into the category of precategories. The left

arrow of the square defining this lifting problem will be obtained using the path

precategory construction given in this section. It turns out that the condition

that our categories are simply connected will only be used to transfer this

lifting problem; the rest of the proof is integration.

First we see how to form the path precategory p(C) of a category C in E .

We will do this by specifying an appropriate finite limit preserving functor

I : Pre→ Cat(E)op . Since the E-valued hom in Cat(E) gives us a functor

[Pre, Cat(E)op]lex × Cat(E)→ [Pre, E ]lex

we can then induce a functor p : Cat(E) → PreCat(E) from this data. The

first result from this section that we will require in the proof of Lie’s second

theorem is that the functor p is faithful on arrows whose codomain is path

connected.

We then define the path category P (C) of a category C in E as the quotient

category of p(C). For the purpose of comparing the path category P (C) with

the category C itself we form a natural transformation L : P ⇒ 1Cat(E). The

two other results that we will require in the proof of Lie’s second theorem are

that the component LC is an epimorphism if C is path connected and that LC

is an isomorphism iff C is simply connected. Finally we remark that all these

constructions go through equally well when we specialise from categories to

groupoids and give the statements of the corresponding results.

Before we give the definition of path precategory we need to define how to

concatenate homotopies.

Definition 3.4.1. The arrow µ2 which describes the concatenation of homo-
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topies is defined as the following unique factorisation

3× I 2∗I× I

2× I I× I

2 O

3 2∗O

π1

2∗l×I

l×I

π1

l×I
µ×I

l

µ2

where the inner square and outer squares are pushouts.

Definition 3.4.2. The functor I : Pre→ Cat(E)op takes

R C M
r1

c

r2

s

e

t

7→ O I 1,
ι1

π

ι2

0

!

1

with I(m) = µ : I → 2∗I and I(n) = µ2 : O → 2∗O. The definitions of I(a),

I(λ) and I(ρ) are all obtained from the simply connectedness of n∗I proved in

Lemma 3.3.13 which tells us that for all α, β : I→ n∗I such that α(l) = β(l)

there exists a ψ such that

n∗I

O I

αβ
ψ

ι1

ι2

is serially commutative.

Definition 3.4.3. The functor Y : Pre→ Cat(E)op takes

R C M
r1

c

r2

s

e

t

7→ 2 2 1,
12

12

12

s

!

t

with Y(m) = Y(n) = l : 2→ 3 picking out the long arrow 0→ 2. Note that

since the groupoid 2 satisfies the associativity and unit laws the arrows Y(a),

Y(λ) and Y(ρ) are trivial to define. For example Y(a) = Y(m(m × 1)) =

Y(m(1×m)).
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Definition 3.4.4. The natural transformation l′ : Y ⇒ I is induced from the

diagram homomorphism

2 2 1

O I 1.

lιι1

ι1

π

ι2
l

0

!

1
11

ι1

π

ι2

0

!

1

Remark 3.4.5. Using the E-valued hom in Cat(E) we have a functor

[Pre, Cat(E)op]lex × Cat(E)→ [Pre, E ]lex

Therefore I and Y induce functors p and y : Cat → PreCat(E) respectively

and l′ induces a natural transformation l : p⇒ y. We call the category p(C)

the path precategory of C.

Lemma 3.4.6. The functor y : Cat→ PreCat(E) is full and faithful.

Proof. Let C and D be categories. An arrow φ : y(C)→ y(D) in PreCat(E) is

a diagram homomorphism φi in E such that

C2∗2 C2 C1

D2∗2 D2 D1

(φ1π1,φ1π2)

◦C

φ1

sC

eC

tC φ0

◦D
sD

eD

tD

is serially commutative. But this is precisely an internal functor C→ D.

Lemma 3.4.7. Let C, D be categories and suppose that C is path connected.

Then the map of sets

Cat(E)(C,D)
p−→ PreCat(E)(p(C), p(D))

induced by the application of the functor p is an injection.

Proof. Suppose that ψ,ψ′ : C→ D are two internal functors such that p(ψ) =

p(ψ′). We need to show that ψ = ψ′ and for this it will suffice to show that
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the component lC of the natural transformation l is an epimorphism. Indeed

suppose that lC is an epimorphism. Since the diagram

p(C) p(D)

y(C) y(D)

lC

p(ψ)=p(ψ′)

lD
y(ψ)

y(ψ′)

is serially commutative we obtain that y(ψ) = y(ψ′). But by Lemma 3.4.6 this

implies that ψ = ψ′ as required.

So it remains to check that lC is an epimorphism. Since lC is a diagram

homomorphism it will suffice to show that the components of lC on the gen-

erators of Pre are epimorphisms. The component on ‘objects’ is 1C1 . The

component on ‘arrows’ is Cl : CI → C2 which is an epimorphism because C is

path connected. The component on ‘equivalences’ is Cιι1l : CO → C2 which is

an epimorphism because Cιι1 is an epimorphism split by the map taking an

element φ ∈ CI to the constant element of CO at φ. Similarly the components

C2∗l : C2∗I → C2∗2 and C2∗ιι1l : C2∗I → C2∗2 are epimorphisms and lC is an

epimorphism as required.

Definition 3.4.8. Let C be a category in E . Then the path category P (C) of

C is defined to be the quotient category of the path precategory of C. That

is to say we define the functor P to be equal to (−) ◦ p. It is clear that

(−) ◦ y ∼= 1Cat(E) and so the natural transformation l : p⇒ y induces a natural

transformation L = (−) ◦ l : P ⇒ 1Cat(E).

Lemma 3.4.9. Let C be a path connected groupoid. Then the component LC

is an epimorphism.

Proof. The internal functor LC is an isomorphism on objects so it will suffice

to prove that it is an epimorphism on arrows. Recall that the arrow part L2
C is

defined by the factorisation:

CO CI C

C2 C2 C2

Cιι1

Cιι2
Clιι1

q

Cl L2
C

1C2

1C2

1C2
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But by the hypothesis that C is path connected the arrow Cl is an epimorphism;

hence L2
C is an epimorphism.

Proposition 3.4.10. For all simply connected categories C in E the following

diagram

CO CI C2
Cιι1

Cιι2
Cl

is a coequaliser in E.

Proof. Since E is a topos we have that the epimorphism Cl is the coequaliser

of its kernel pair (k1, k2). Now k1, k2 are defined by the following pullback:

Q CI

CI C2

k2

k1

Cl

Cl

But because O is by definition the pushout of l along itself we know that

Q ∼= CO and ki ∼= Cιi for i = 1, 2. Hence

CO CI C2
Cι1

Cι2
Cl

is a coequaliser. Then the result follows immediately from the fact that

CO Cι−→ CO is an epimorphism which is the hypothesis that C is simply

connected.

Corollary 3.4.11. By Proposition 3.4.10 if C is simply connected then

CO CI C2
Cιι1

Cιι2
Cl

is a coequaliser. Hence if C is simply connected then LC is an isomorphism.

Remark 3.4.12. We can make groupoid versions of the path category and

precategory constructions above with little extra effort. We can replace Cat(E)

with Gpd(E), I with ∇I, O with ∇B and the definitions of path and simply con-

nectedness with their appropriate counterparts for groupoids; the arguments of

this section then go through unchanged. We first describe the additional struc-

ture that is required to define the representing object for path pregroupoids.



3.5. THE WEINSTEIN CATEGORY AND PRECATEGORY 109

Definition 3.4.13. The functor I ′ : Pre′ → Gpd(E)op is defined as the

groupoid version of I on the subcategory Pre� Pre′ and on the extra objects

as follows. The arrows I(iC) and I(iR) are induced from the arrows

x 7→ 1− x : I → I

and

(x, y) 7→ (1− x, y) : I × I → I × I

respectively. Since 2∗∇I ∼= ∇(2∗I) is simply connected we have unique arrows

ψ1 and ψ2 making the diagrams

∇I

∇B ∇I

µ(I(iC),1)1∇I
ψ2

ι1

ι2

and

∇I

∇B ∇I

µ(1,I(iC))1∇I
ψ1

ι1

ι2

commute. Then we set I(I1) = ψ1 and I(I2) = ψ2.

Extending the analogy we can obtain functors corresponding to p, P and

natural transformations l and L and the following results.

Proposition 3.4.14. If G is a path connected groupoid then LG is an epimor-

phism; if G is simply connected then LG is an isomorphism.

Proposition 3.4.15. Let G, H be groupoids and suppose that G is path con-

nected. Then the map of sets

Gpd(E)(G,H)
p−→ PreGpd(E)(p(G), p(H))

induced by the application of the functor p is an injection.

3.5 The Weinstein Category and Precategory

The Weinstein category and precategory constructions are very similar to the

constructions of the path category and precategory we have just seen but with

I∞ and O∞ replacing the categories I and O respectively. However to define

the associativity and unit arrows required in the definition of precategory we

first need to check that when we take the jet part of the category n∗I we get

the category n∗I∞.
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Lemma 3.5.1. There is an inclusion of preorders

N2
I I2

I × I

Proof. Let (a, b) ∈ N2
I such that a ∼ b. This means that there exists a

D ∈ Spec(Weil), a φ ∈ ND
I and a d ∈ D such that φ(0) = a and φ(d) = b.

Hence the object D, the element (d 7→ (a, φ(d))) ∈ (NI×NI)
D and the element

d ∈ D gives us that (a, a) ∼ (a, b) in I × I. Iterating this argument we obtain

that if a ≈ b then (a, a) ≈ (a, b). But since I is a category we have that

(a, a) ∈ I2 and so since I2 is jet closed in I × I by Remark 2.3.6 we see that

(a, b) ∈ I2 also.

Corollary 3.5.2. Combining Lemmas 2.3.18 and 3.5.1 we see that

I∞ = NI

Using the obvious inclusion N2
I � I2 we see that

∇I∞ = NI

also and hence that I and ∇I have equal jet parts.

Lemma 3.5.3. We have an inclusion of preorders

N2
B O2

B ×B

Proof. First we note that if q : I × I � B is the quotient defining B in

Definition 3.3.7 then qDW : IDW × IDW � BDW is an epimorphism for all

DW ∈ Spec(Weil) using Proposition 1.3.8. Hence if a, b ∈ B and the object

DW ∈ Spec(Weil), the element φ ∈ BDW and the element d ∈ DW witness

that a ∼ b then there exists ψ ∈ (I × I)DW and a′, b′ ∈ I2 such that qa′ = a,

qb′ = b and the triple (DW , ψ, d) witnesses that a′ ∼ b′. Now the result follows

from the following implications:-

a ∼B b ⇐⇒ ∃(a′, b′) ∈ (I × I)2. (a′ ∼ b′) ∧ (qa′ = a) ∧ (qb′ = b)

=⇒ ∃(a′, b′) ∈ (I× I)2. (qa′ = a) ∧ (qb′ = b)

=⇒ (a, b) ∈ O2
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where the second line is obtained from the first using Lemma 3.5.1.

Notation 3.5.4. Let RR denote the category of reflexive relations internal to

E . We write (R,X) as a shorthand for a reflexive relation R� X ×X.

Definition 3.5.5. Recall that a category C in E is a preorder iff the arrow

(s, t) : C → M ×M is a monomorphism. Let ι : PO ↪→ Cat(E) be the full

subcategory on the objects that are preorders.

Lemma 3.5.6. The category PO of preorders is a reflexive subcategory of the

category RR of reflexive relations.

RR PO

tr

⊥

U

Proof. The transitive closure tr(R,X) of a reflexive relation (R,X) is the

category

trR×X trR trR X
(π1,π4)

π1

∆

π2

where the object trR is the internal transitive closure of R in E . The functor

U takes a groupoid that is a preorder and returns the underlying reflexive

relation.

Let (R,X) be a reflexive relation. We choose the unit of the adjunction

to be the inclusion cR = (R,X)� (tr(R), X) of a reflexive relation into its

transitive closure. Let X be a preorder. Then tr(U(X)) = X because all

preorders are closed under composition and so we choose the counit to be 1X.

We check that U(1X) ◦ cU(X) = 1U(X) and 1tr(R) ◦ tr(cR) = 1tr(R).

Remark 3.5.7. We now recall how to calculate a pushout

(R3, X3) (R1, X1)

(R2, X2) (R,X)

ι1

ι2

in RR. The object of objects is given by the pushout X = X2 +X1 X3 in E
and the subobject R consists of all the pairs (x, y) ∈ X2 such that

(x, y) ∈ R ⇐⇒ ∨2
i=1 (∃xi, yi ∈ Ri. (ιixi = x) ∧ (ιiyi = y))

holds in the internal logic of E .
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Lemma 3.5.8. There is an isomorphism NA ∼= NA1 +NA3
NA2 in PO for all

pushouts

A3 A1

A2 A

ι1

ι2

in E.

Proof. It will suffice to show that the square

(∼A3 , A3) (∼A1 , A1)

(∼A2 , A2) (∼A, A)

ι1

ι2

is a pushout in RR because then we could apply the functor tr to this square

and use Lemma 3.5.6 to get the result. Since both of the objects ∼A1 and ∼A2

are subobjects of A2 it will in turn suffice to show that the proposition

x ∼A y ⇐⇒ ∨2
i=1∃ai, bi ∈ Ai. (ai ∼ bi) ∧ (ιiai = x) ∧ (ιibi = y)

holds in the internal logic of E . Now for all DW ∈ Spec(Weil) we have the

isomorphism ADW ∼= ADW1 +
A
DW
3

ADW2 by Proposition 1.3.8 and so

φ ∈ ADW ⇐⇒ ∨2
i=1∃ψi ∈ A

DW
i . ιiψi = φ

and hence

x ∼A y ⇐⇒
∨
W

∃φ ∈ ADW . ∃d ∈ DW . (φ(0) = x) ∧ (φ(d) = y)

⇐⇒
∨
W

∃d ∈ DW . ∨2
i=1

(
∃ψi ∈ ADWi .(ιiψi(0) = x) ∧ (ιiψi(d) = y)

)
⇐⇒ ∨2

i=1∃ai, bi ∈ Ai. (ai ∼Ai bi) ∧ (ιiai = x) ∧ (ιibi = y)

as required.

Corollary 3.5.9. We have an isomorphism

2∗I∞ ∼= (2∗I)∞
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Proof. We have the sequence of isomorphisms:

(2∗I)2∞ = N2
2∗I ∩ (2∗I)2 by Lemmas 2.3.18 and 3.2.4

∼= (2∗NI)2 ∩ (2∗I)2 by Corollary 3.5.8

∼= (2∗NI)2 by Lemma 3.5.1

∼= 2∗(I∞)2 by Lemmas 3.2.5 and 3.5.6

Corollary 3.5.10. We have an isomorphism 2∗I∞ ∼= (2∗∇I)∞.

Proof. We proceed in the same way as in Corollary 3.5.9 except that rather

than referring to Lemma 3.5.1 we use the inclusion NX � X ×X.

Corollary 3.5.11. We have an isomorphism of categories (2∗O)∞ ∼= 2∗O∞.

Proof. The result follows from the sequence of isomorphisms

(2∗O)∞ ∼= (N2∗B)2 ∩ (2∗O)2

∼= (2∗NB)2 ∩ (2∗O)2

∼= (2∗NB)2

∼= 2∗(N2
B ∩O2)

∼= 2∗O∞

where the first isomorphism is Lemma 2.3.18, the second is from Lemma 3.5.8

and Lemma 3.2.5, the third and fourth from Lemma 3.5.3 and the last from

Corollary 2.3.18 again.

Now that we have checked that (−)∞ preserves the appropriate pushouts we

are in a position to define the ‘representing diagram’ for Weinstein precategories.

Definition 3.5.12. The functor I∞ : Pre→ Cat(E)op takes

R C M
r1

c

r2

s

e

t

7→ O∞ I∞ 1,
ι1

π

ι2

0

!

1

with I∞(m) = µ∞ : I∞ → 2∗I∞ and I∞(n) = (µ2)∞ : O∞ → 2∗O∞. Let I(a),

I(λ) and I(ρ) be the arrows obtained in Definition 3.4.2. Then we define

I∞(a) = I(a)∞, I∞(λ) = I(λ)∞ and I∞(ρ) = I(ρ)∞. Note that these arrows

have the correct codomain by Corollaries 3.5.9 and 3.5.11.
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Definition 3.5.13. The natural transformation v′ : I∞ ⇒ I is induced from

the diagram homomorphism

O∞ I∞ 1

O I 1.

ιO

ι1

π

ι2
ιI

0

!

1
11

ι1

π

ι2

0

!

1

Remark 3.5.14. Using the E-valued hom in Cat(E) we have a functor

[Pre, Cat(E)op]lex × Cat(E)→ [Pre, E ]lex

Therefore I∞ induces a functor w : Cat → PreCat(E) respectively and v′

induces a natural transformation v : p⇒ w. If C is a category in E then w(C)

is called the Weinstein precategory of C.

Definition 3.5.15. Let C be a category in E . Then the Weinstein category

W (C) of C is defined to be the quotient category of the Weinstein precategory

of C. That is to say we define the functor W to be equal to (−) ◦ w. The

natural transformation v : p ⇒ w now induces a natural transformation

V = (−) ◦ v : P ⇒W .

Remark 3.5.16. We can make groupoid versions of the path category and

precategory constructions above with little extra effort. We can replace Cat

with Gpd, I with ∇I, O with ∇B and the definitions of path and simply

connectedness with their appropriate counterparts for groupoids the arguments

of this section go through unchanged. We first describe the additional structure

that is required to define the representing object for Weinstein pregroupoids.

Definition 3.5.17. The functor I ′∞ : Pre′ → Gpd(E)op is defined as the

groupoid version of I∞ on the subcategory Pre � Pre′ and on the extra

objects as follows. Let I(iC), I(iR), I(I1) and I(I2) be the arrows obtained

in Definition 3.4.13. Then we define I∞(iC) = I(iC)∞, I∞(iR) = I(iR)∞,

I∞(I1) = I(I1)∞ and I∞(I2) = I(I2)∞.

Extending the analogy further we can obtain functors corresponding to w,

W and natural transformations v and V .



Chapter 4

Synthetic Lie Theory

Recall that in classical Lie theory we have a functor

LieGp
CBH−−−→ FGL

taking a Lie group G to the formal group law produced by applying the

Campbell-Baker-Hausdorff formula to its Lie algebra g. If we restrict its

domain to the category of simply connected Lie groups the functor CBH

becomes full, faithful and essentially surjective. In Sections 2.3.2 and 2.3.3

we defined the categories Cat∞ and Catint that will replace the category of

formal group laws and the category of Lie groups respectively in our treatment

of Lie theory. In addition we constructed an adjunction

Cat∞ Catint

(−)int

⊥

(−)∞

and in Section 3.3 we chose a natural definition of simply connected category.

In the first section of this chapter we will prove Lie’s second theorem in this

context: that the functor (−)∞ is full and faithful when we restrict to simply

connected categories. In addition we show how (by adding an extra condition

that we identified in Section 2.3.2) we can specialise this result to the situation

where we replace categories in E with groupoids in E .

In the second section of this chapter we describe a category Catsym∞ which

we can use as an alternative to Cat∞ provided that we work in the Cahiers

topos. The objects of this category will be called symmetric jet categories.

115
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Most of the theory for symmetric jet categories works in a completely anal-

ogous way to the theory involving asymmetric jet categories but there are

considerable simplifications when defining the analogue of the functor (−)∞.

These simplifications are due to the fact that jet dense arrows in the Cahiers

topos are stable under pullback (which we proved in Section 2.2.4). In the

final section we will show that neither the symmetric or asymmetric version of

the functor (−)∞ is essentially surjective and speculate on how this might be

remedied.

4.1 Lie’s Second Theorem

Now we will prove the main result of the thesis: that under certain conditions

on C and X any internal functor φ : C∞ → X can be lifted to an (unique)

internal functor ψ : C→ D such that

C∞ X

C

ιC∞

φ

ψ

commutes. We will deduce this from the more general Theorem 4.1.6 that

under certain conditions on C finds a unique filler for squares of the form

C∞ X

C Y

ιC∞

φ

rψ

ξ

(4.1)

whenever r is in the right class of the integral factorisation system. In other

words, we show that C∞� C is in the left class of the integral factorisation

system. However to introduce the ideas we fix r =! : X→ 1 which means that

the condition r ∈ Rint reduces to the assertion that the arrow Xι∞ : XI∞ → XI

is an isomorphism. In particular we have that the path groupoid P (X) of X
and the Weinstein groupoid W (X) of X are isomorphic. This means that we

can construct homomorphisms into the path groupoid P (X) using only the

infinitesimal data available in the Weinstein groupoid W (X). We can then

postcompose with the map LX : P (X)→ X to obtain a map into X.
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The conditions we impose on C can now be motivated as those required to

legitimately convert the lifting problem (4.1) into a lifting problem involving

path categories. We assert that C is simply connected so that homomorphisms

out of C are the same thing as homomorphisms out of P (C). We are now in a

position to state that (for the special case of r =! : X→ 1) the composite

ψ = C
L−1
C−−→ P (C)

VC−→W (C) ∼= W (C∞)
W (φ)−−−→W (X) ∼= P (X)

LX−−→ X (4.2)

is the ψ that we require. It remains to ensure that restriction along P (ιC∞)

induces the correct restriction along ιC∞ and we will see that it always does if

we assume that C∞ is path connected.

4.1.1 Proof of the Main Theorem

As indicated in the introduction to this chapter we will now fix a category C in

E such that C itself is simply connected and the jet part C∞ of C constructed in

Definition 2.3.13 is path connected. In addition we will fix an internal functor

r : X → Y in the right class Rint of the integral factorisation system. Our

objective is to show that the square (4.1) has a unique filler. Note that in the

case r =! : X→ 1 this amounts to the condition that the arrow Xι∞ : XI∞ → XI

is invertible and we find ourselves in the special case which we considered in

the introduction to this chapter. To prove the result for a general r ∈ Rint it

will be convenient to modify slightly the strategy outlined above. To see why

recall that r ∈ Rint iff

XI XI∞

YI YI∞

rI∞

XιI

rI∞

YιI

(4.3)

is a pullback in E . The additional difficulty we face in this general situation is

that it is not obvious that the square

P (X) W (X)

P (Y) W (Y)

P (r)

VX

W (r)

VY

is a pullback. (Previously it was obvious that XI∞ ∼= XI implied that P (X) ∼=
W (X).) Our solution will be to take one step further back and transfer the
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problem into the category of precategories where pullbacks are computed

componentwise; so to show that the square

p(X) w(X)

p(Y) w(Y)

p(r)

vX

w(r)

vY

is a pullback it will suffice to check that the square

XO XO∞

YO YO∞

rO∞

XιI

rO∞

YιO

(4.4)

is a pullback which follows from the following two Lemmas.

Lemma 4.1.1. The square

2× I∞ I∞ × I∞

2 O∞

π1

(0,1)×I∞

is a pushout in Cat(E).

Proof. The result follows from the isomorphisms

O2
∞
∼= N2

B ∩O2 by Lemmas 2.3.18 and 3.3.9

∼= N2
B by Lemma 3.5.3

∼= N2
2 +N2

2×I
N2
I×I by Lemma 3.5.8

∼= 2 +2×I2∞ (I2∞ × I2∞)

where the last line we use the fact that

NI×I ∼= NI × NI ∼= I∞ × I∞

by Example 2.3.3.

Lemma 4.1.2. The arrow ιO∞ : O∞ → O is in the left class of the integral

factorisation system.
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Proof. Since the integral factorisation system is a Cat(E)-factorisation system

and ιI∞ : I∞ → I is in the left class Lint we see that ιI∞ × ιI∞ is in Lint. But

Lint is also closed under colimits so the pushout

ι2∞ × ιI∞ ιI∞ × ιI∞

ι2∞ ιO∞

π1

F×ιI∞

is also in Lint as required. The arrow F is the one described by the pair of

arrows ((0, 1)× I∞, l × I).

Corollary 4.1.3. For all arrows r : X→ Y in the right class of the integral

factorisation system the square

p(X) w(X)

p(Y) w(Y)

p(r)

vX

w(r)

vY

is a pullback in PreCat(E).

The following two Lemmas now effect the transfer of the lifting problem to

the category of precategories.

Lemma 4.1.4. Let D be the commutative square

C∞ X

C Y

ιC

φ

r

ξ

in Cat(E). If the square P (D) has a filler then the square D has a filler.

Proof. Since C is simply connected by hypothesis then Corollary 3.4.11 implies

that LC is an isomorphism. We are also assuming that the jet part C∞ is path

connected and so using Lemma 3.4.9 we see that LC∞ is an epimorphism. By
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naturality of L the cube

C∞ X

P (C∞) P (X)

P (C) P (Y)

C Y

ιC

φ

r

P (φ)

P (ιC)

LC∞

P (r)

LX

P (ξ)

LC

LY

ξ

commutes. Therefore if we have a χ that fills the inner square then LX ◦χ◦L−1
C

fills the outer square. Indeed it is immediate that the lower triangle commutes:

r ◦ LX ◦ χ ◦ L−1
C = LY ◦ P (r) ◦ χ ◦ L−1

C

= LY ◦ P (ξ) ◦ L−1
C

= ξ

To see that the upper triangle commutes we use that LC∞ is an epimorphism:

LX ◦ χ ◦ L−1
C ◦ ιC ◦ LC∞ = LX ◦ χ ◦ P (ιC)

= LX ◦ P (φ)

= φ ◦ LC∞

=⇒ LX ◦ χ ◦ L−1
C ◦ ιC = φ

Corollary 4.1.5. If the square p(D) has a filler then the square D has a filler.

Proof. By Lemma 4.1.4 it will suffice to obtain a filler of the square P (D). To

get a filler of P (D) from a filler of p(D) we apply the functor (−) : PreCat(E)→
Cat(E) that forms the quotient groupoid of the pregroupoid.

Now the main result follows in a formal fashion. We obtain the existence

of the required lifts in an analogous way to (4.2) in the introduction and prove

uniqueness using the fact that p is faithful for a path connected domain.
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Theorem 4.1.6. Let C be a simply connected category such that C∞ is path

connected. Then the inclusion ιC : C∞� C is in the left class of the integral

factorisation system.

Proof. Suppose that

C∞ X

C Y

ιC

φ

r

ξ

(4.5)

commutes. Then we need to find a unique filler ψ : C → X. To exhibit the

existence of a filler we use Corollary 4.1.5 to see that it will suffice to find a

filler Ψ for the square

p(C∞) p(X)

p(C) p(Y)

p(ιC)

p(φ)

p(r)

p(ξ)

(4.6)

in PreCat(E). To do this we will exhibit p(X) as a pullback. By combining

the hypothesis that r is in the right class of the integral factorisation system

with Corollary 4.1.3 we see that the bottom right square in

p(C) w(C) w(C∞)

p(X) w(X)

p(Y) w(Y)

p(ξ)

vC

Ψ

w(ιC)−1

w(φ)

vX

p(r) w(r)

vY

is a pullback. By Lemma 2.3.17 the arrow w(ιC) : w(C∞)→ w(C) is invertible.

Thus if we want to find an arrow extending p(φ) we have a natural choice:

the arrow Ψ : p(C) → p(X) induced by the pair (p(ξ), w(φ) ◦ w(ιC)−1 ◦ vC)

as displayed above. First we check that this pair does indeed give rise to a

commuting square:

w(r) ◦ w(φ) ◦ w(ιC)−1 ◦ vC = w(ξ) ◦ w(ιC) ◦ w(ιC)−1 ◦ vC

= w(ξ) ◦ vC

= vY ◦ p(ξ)
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and hence gives rise to Ψ as indicated. We now check that Ψ is indeed a filler

for Diagram 4.6:

1. the equality p(r) ◦Ψ = p(ξ) follows immediately from the definition of Ψ,

2. the equality Ψ ◦ p(ιC) = p(φ) is checked using the universal property of

the pullback p(X):

(a) firstly:

vX ◦Ψ ◦ p(ιC) = w(φ) ◦ w(ιC)−1 ◦ vC ◦ p(ιC)

= w(φ) ◦ w(ιC)−1 ◦ w(ιC) ◦ vC∞
= w(φ) ◦ vC∞
= vX ◦ p(φ)

(b) secondly:

p(r) ◦Ψ ◦ p(ιC) = p(ξ) ◦ p(ιC) = p(r) ◦ p(φ).

So by Corollary 4.1.5 we obtain a filler for (4.5).

To show that this filler is unique suppose that we have two arrows ψ and

ψ′ such that

C∞ X

C Y

ιC

φ

r

ξ

ψ
ψ′

(4.7)

is serially commutative. Then we need to show that ψ = ψ′. By hypothesis C
is path connected so by an application of Lemma 3.4.7 it will suffice to show

that p(ψ) = p(ψ′) : p(C)→ p(X) and to exhibit this equality we again use the

fact that p(X) is a pullback:

1. the equality p(r) ◦ p(ψ) = p(r) ◦ p(ψ′) follows immediately from the serial

commutativity of Diagram 4.7,

2. the equality vX ◦ p(ψ) = vX ◦ p(ψ′) follows from the serial commutativity
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of the diagram

p(C) p(X)

w(C) w(X)

w(C∞)

vC

p(ψ)

p(ψ′)
vX

w(ψ)

w(ψ′)

w(φ)
w(ιC)−1

where we have used Lemma 2.3.17 to see that w(ιC) is invertible.

Corollary 4.1.7. Consider the special case where r = (s, t) : X → 1 and so

XI∞ ∼= XI. Then we have shown that any internal functor φ : C∞ → X can be

lifted to a (unique) internal functor ψ : C→ X such that

C∞ X

C

ιC

φ

ψ

commutes in Cat(E).

Definition 4.1.8. Let Catintsc (E) denote the full subcategory of Cat(E) whose

objects are simply connected categories C such that the jet part C∞ is path

connected and the arrow

CI Cι∞−−−→ CI∞

is an isomorphism.

Corollary 4.1.9. The functor (−)∞ : Catintsc (E) → Cat∞(E) is full and

faithful.

Proof. Let C and X be simply connected categories whose jet part is path

connected. To see that (−)∞ is faithful let φ, ψ : C→ X be internal functors

and suppose that φ∞ = ψ∞. Then we have that φιC = ιXφ∞ = ιXψ∞ = ψιC .

But by Corollary 4.1.7 we see that there is a unique lift χ : C → X such

that χιC = φιC . Since both φ and ψ are examples of such lifts we have that

φ = χ = ψ as required.
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To see that (−)∞ is full let z : C∞ → X∞. Then using Corollary 4.1.7

again we see that there is a (unique) homomorphism ψ : C → X such that

ψιC = ιXz. Since ιX is a monomorphism ιXψ∞ = ψιC = ιXz implies ψ∞ = z

as required.

Remark 4.1.10. We have seen that it is not possible to deduce Lie’s second

theorem for groupoids immediately from Lie’s second theorem for categories

because by Corollary 2.3.22 the jet part (∇D)∞ of the pair groupoid on the

space

D = {x ∈ R : x2 = 0}

is a category but cannot be given the structure of a groupoid. However

Propositions 2.3.20 and 2.3.26 tell us that if we impose the extra condition

that the relation ≈ is symmetric on the space (G, s) in E/M then the jet part

can always be made into a groupoid in a natural manner. Therefore with this

restriction in place we can specialise the theory to the case of groupoids.

Definition 4.1.11. Let Gpdintsc,≈(E) denote the full subcategory of Gpd(E)

whose objects are simply connected groupoids G with arrow space G such that

the jet part G∞ is path connected, the relation ≈ is symmetric on the object

(G, s) of E/M and the arrow

G∇I Gι∞−−−→ G∇I∞

is an isomorphism.

Theorem 4.1.12. The functor (−)∞ : Gpdintsc,≈(E) → Cat∞(E) is full and

faithful.

4.1.2 The Symmetric Jet Part in the Cahiers Topos

Recall that in Section 2.3.2 we used the jet factorisation system on the slice

category E/M when defining the jet part of a category C with base space

M . The reason that we needed to do this was that if we defined C2
∞ as the

mediating object of the jet factorisation

M
e∞−−→ C∞

ι∞−−→ C
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of the arrow e in E then the arrow

C∞
(1C∞ ,e∞t∞)
−−−−−−−−→ 2×C∞

is not obviously jet dense in E . To see the difficulty let us fix an element (f, g)

of 2×C∞. Then we always have that esg ≈ g. Heuristically speaking there is

a jet φ containing g that has base at esg and we would like to pair this jet

with f to obtain (f, esg) ≈ (f, g). The difficulty is that although esg and g

have the same source we cannot guarantee that the whole of the jet φ linking

them is contained in the same source fibre and hence it doesn’t necessarily

make sense to precompose φ with f . Intuitively the inability to find a source

constant jet from esg to g requires an infinitesimal ‘gap’ or ‘dent’ in the arrow

space of C so that we must change source fibre in order to go around it. Since

this might be considered a pathological property for an object in a category

of ‘smooth spaces’ to have we now show that in the Cahiers topos the arrow

(1C∞ , e∞t∞) actually is jet dense. Once we have done this we can define an

alternative (symmetric) jet part using only the jet factorisation system on E .

Then we can proceed in a completely analogous manner with the asymmetric

case to obtain a functor from simply connected integral complete categories

to symmetric jet categories that is full and faithful. One convenient feature

of this symmetric theory is that it specialises with little modification to the

situation where we consider groupoids rather than categories.

The special property of the Cahiers topos that we will use is the pullback

stability of jet dense arrows. Hence we recall Proposition 2.2.33:

Proposition. Let g : A→ B be jet dense in the Cahiers topos and

P A

C B

π1

π2

g

k

be a pullback in E. Then the arrow π1 is jet dense.

In the rest of this section we will work in the Cahiers topos EW and C will

denote an arbitrary category in E with arrow space C object space M and

structure maps s, t, e and µ.
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Corollary 4.1.13. The arrow

C∞
(1C∞ ,e∞t∞)
−−−−−−−−→ 2∗C∞

is jet dense in the Cahiers topos.

Proof. The arrow e∞ : M → C∞ is jet dense in E and so the pullback

C∞ M

C∞ ×s∞ t∞ C∞ C∞

(1C∞ ,e∞◦s∞)

s∞

e∞

π2

shows that the arrow (1C∞ , e∞ ◦ s∞) : C∞ → C∞ ×s∞ t∞ C∞ is jet dense in

E .

Definition 4.1.14. Let C be a category in the Cahiers topos. Then the

symmetric jet part C∞ of C is defined as follows. It has object space M , arrow

space C∞ defined as the mediating object in the jet factorisation of the arrow

e : M → C:

M
e∞−−→ C∞

ιC−→ C

and reflexive graph structure given by

C∞ M
s∞

e∞

t∞

where s∞ = s ◦ ιC and t∞ = t ◦ ιC . The multiplication m∞ : 2×C∞ → C∞ is

defined as the unique filler for the square

C∞ C∞

2×C∞ C

(1C∞ ,e∞t∞)

1C∞

ιC

m◦2×ι∞

m∞

where (1C∞ , e∞t∞) is jet dense by Corollary 4.1.13. The multiplication m∞ is
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well-typed because the outer square of

2×C C

2×C∞ C∞

C∞ M

C M

π1

m

s

m∞

π1

2×ι∞

s∞

ι∞

s∞

ι∞

1M

s

commutes and ι∞ is a monomorphism. The associativity axiom holds because

the outer square of

3×C 2×C

3×C∞ 2×C∞

2×C∞ C∞

2×C C

1×m

m×1

m

m∞×1

1×m∞

3×ι∞

m∞

2×ι∞

m∞

ι∞

m

commutes and ι∞ is a monomorphism. One unit axiom holds because

C 2×C

C∞ 2×C∞

C∞ C∞

C C

1C

1×e

m

1×e∞

1C∞

ι∞

m∞

2×ι∞

1C∞

ι∞
ι∞

1C

commutes and ι∞ is a monomorphism and the other unit axiom is shown to

hold in a similar manner.

Remark 4.1.15. In an analogous way to the asymmetric construction in

Section 2.3.2 we make the definition of a symmetric jet category and show that

the function (−)∞ taking a category to its jet part extends to a functor. Then

we obtain the following results.



128 CHAPTER 4. SYNTHETIC LIE THEORY

Proposition 4.1.16. The category Catsym∞ (EW ) of symmetric jet categories

in the Cahiers topos EW is a coreflective subcategory of Cat(EW ).

Theorem 4.1.17. Let Catintsc (EW ) denote the full subcategory of Cat(EW )

whose objects are simply connected categories C in the Cahiers topos such that

the jet part C∞ is path connected and the arrow

CI Cι∞−−−→ CI∞

is an isomorphism. Then the functor

Catintsc (EW )
(−)∞−−−→ Catsym∞ (EW )

is full and faithful.

Remark 4.1.18. Unlike the construction of the asymmetric jet part, the

construction of the symmetric jet part specialises from categories to groupoids

without much further effort. The remainder of this section gives the appropriate

commutative diagrams that make this work.

Proposition 4.1.19. Let G be a groupoid with symmetric jet part G∞. Then

the arrow iG∞ : G∞ → G∞ defined as the unique filler for the square

M G∞

G∞ G

e∞

e∞

ι∞iG∞

iGι∞

is a well-defined inverse that makes G∞ into a groupoid.

Proof. The inverse iG∞ is well typed because the outer square of

G G

G∞ G∞

M M

M M

s

iG

t

iG∞

s

ι∞

t∞

ι∞

1M

1M

1M

1M
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commutes and ι∞ is a monomorphism. One inverse axiom holds because

G 2×G

G∞ 2×G∞

M G∞

M G

s

1×iG

m

1×iG∞

s∞

ι∞

m∞

2×ι∞

e∞

1M

ι∞

e

commutes and ι∞ is a monomorphism. Similarly for the other inverse axiom.

Remark 4.1.20. Again we make the definition of a symmetric jet groupoid

and show that the function (−)∞ taking a groupoid to its symmetric jet part

extends to a functor. In this case we obtain the following results.

Proposition 4.1.21. The category Gpdsym∞ (EW ) of symmetric jet groupoids

in EW is a coreflective subcategory of Gpd(EW ).

Theorem 4.1.22. Let Gpdintsc (EW ) denote the full subcategory of Gpd(EW )

whose objects are simply connected groupoids G such that the jet part G∞ is

path connected and the arrow

G∇I Gι∞−−−→ G∇I∞

is an isomorphism. Then the functor

Gpdintsc (EW )
(−)∞−−−→ Gpdsym∞ (EW )

is full and faithful.

4.2 Lie’s Third Theorem

The construction of the functor

Gpd∞(E)
(−)int−−−−→ Gpdint(E)
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in Section 2.3.3 allows us to obtain an integral complete category from any

jet category. However for the corresponding situation in classical Lie theory

more is true: there is an equivalence of categories between the category of

formal group laws and the category of simply connected Lie groups. Now in

Example 2.3.12 we have seen that jet groups of the form (Dn
∞, µ) are precisely

formal group laws. Hence we can recover this equivalence of categories by

restricting the domain of (−)int to jet groups of the form (Dn
∞, µ) and its

codomain to simply connected Lie groups.

We will now describe a counterexample which shows that in the adjunction

Gpd∞(E) Gpdint(E)

(−)int

⊥

(−)∞

(4.8)

the unit is not an isomorphism. In other words, we will find a jet groupoid K∗

for which (K∗int)∞ is not isomorphic to K∗. Recall that since the underlying

vector bundle of any Lie algebroid is by definition locally trivial the dimension

of its fibres are constant within connected components of the base space. The

analogous property involving the vertex groups of a jet groupoid does not hold.

Example 4.2.1. The groupoid K∗ is given by the pushout

1 (D∞,+)

∇I∞ K∗
e(1)

0

u1

u2

where (D∞,+) is the internal group in E with arrow space D∞ and composition

given by addition. We first observe that the vertex group of K∗ at the element

0 ∈1 I is trivial because ∇I∞ = NI is a preorder. Next we observe that the

vertex group of K∗ at the element 1 ∈1 I is (D∞,+) by construction. However

when we form the integral completion K∗int we have a lift ψ : ∇I → K∗int making

the diagram

∇I∞ K∗int

∇I

ι∞

τu2

ψ
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commute. Then by conjugating an element of the vertex space of K∗ at 1 ∈1 I

with the arrow ψ(l) we see that the vertex space of K∗int at 0 ∈1 I is not trivial.

For instance at stage of definition D we have that the arrow defined by

d 7→ ψ(l)−1 ◦ u1(d) ◦ ψ(l)

is a generalised element of (K∗int)2∞ at stage of definition D that is an endo-

morphism of the object 0 ∈1 I. Hence the groupoid (K∗int)∞ is not isomorphic

to K∗.

Therefore the question arises: can we characterise the jet categories K for

which the unit of the adjunction (4.8) is an isomorphism? It is a question

that we will not answer in this thesis; it would be a logical direction for future

research. In view of the previous example it certainly would be necessary

to ensure that if there is an A-path φ : ∇I∞ → K starting at the object x

and ending at the object y then the vertex groups at x and y are isomorphic.

Therefore one would need to find some way of transporting infinitesimal arrows

along A-paths. It is tempting to speculate that a condition asserting the

existence of an appropriately defined notion of connection (and therefore

parallel transport) for A-paths would be sufficient to obtain an equivalence of

categories.





Chapter 5

Relationship to Classical Lie

Theory

In the course of this thesis we have made several definitions concerning objects in

a well-adapted model E which are intended to be analogous to certain definitions

in classical Lie theory. In this chapter we will make precise how our definitions

in E generalise their classical counterparts. For notational convenience we will

use the prefix E when describing the non-classical constructions we have made.

For example an E-simply connected groupoid is a groupoid G in E such that

the arrow

GO Gι−→ GO

is an epimorphism and an s-simply connected Lie groupoid is a Lie groupoid

in Man which has simply connected source fibres.

The main difficulty is that the classical definitions only concern global

elements but their synthetic counterparts must be shown to hold for all gener-

alised elements with domain a representable object of E . If we restrict attention

to the well adapted models that we have considered in Chapter 1 then the

topos Egerm has the largest number of representable objects and EW the least.

Although in the last section we will resort to using the simpler representable

objects in EW we will otherwise prove the more general results that arise from

working in any well-adapted model.

In Section 5.1 we will show that all s-path connected Lie groupoids are

E-path connected in Egerm. In this case the classical property of being s-path

133
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connected tells us that for any global element g ∈1 G of the arrow space there

is a source constant path γ that starts at esg and ends at g. By contrast to

prove that G is E-simply connected it turns out that we need to show that

for every global element g ∈1 G there exists an open set U containing g and

a source constant homotopy from U to some open set completely contained

in the image of the identity map e. The main idea is to use the fact that for

any Lie groupoid in Man the source map s is a submersion and so by the

implicit function theorem we have that s is locally isomorphic to the orthogonal

projection Rk+n � Rk onto the first k coordinates for some k, n ∈ N. Then

intuitively speaking, if we are given an open set U we can move it closer to

the image of e in a source constant manner by translating it in parallel to this

orthogonal projection.

In Section 5.2 we prove that every Lie groupoid G the jet part G∞ is path

connected in Egerm. To do this we find a cover of G∞ in Egerm and for every

subobject U in this cover a retraction of U into the image of e∞. The cover

that we will use will be a restriction of a cover of G on which the source map

s|U is locally a projection. Although in Section 5.1 we show how to retract U

onto the image of e in G the main work in Section 5.2 is to demonstrate that

we can choose this retraction so that it factors through G∞. To do this we will

show that a certain arrow which arises as a pullback is jet dense and so will

appeal to Corollary 2.2.3.

I have been unable to prove that every s-simply connected Lie groupoid is

E-simply connected. However in Section 5.3 we will see that the single object

version of this statement is true. That is to say: every simply connected Lie

group is Egerm-simply connected. In Section 5.4 we describe how the definitions

of A-paths and G-paths that can be found in for example [7] are generalised in

Egerm and that for every Lie groupoid G we have that the arrow ! : G→ 1 is

in the right class of the integral factorisation system. Explicitly this means

that we show that the arrow

GI Gι∞−−−→ GI∞

is an isomorphism. To do this we reduce the problem to certain classical

results concerning the solution of time- and parameter- dependent vector fields.

In order to make this reduction we make use of the simplified structure of
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representables in the Cahiers topos to separate the infinitesimal part from the

macroscopic part. Therefore we only show that GI ∼= GI∞ in EW .

5.1 Path Connectedness

In this section we let E be any well-adapted model. We fix a Lie groupoid G
in E that has arrow space G, object space M and structure maps s, t, e and µ.

We need to show that for all s-path connected Lie groupoids the arrow

G∇I Gl−→ G2

is an epimorphism. To do this we recall Corollary 5 in III.7 of [23]:

Proposition 5.1.1. A morphism of sheaves φ : F → G is an epimorphism in

the Grothendieck topos Sh(C,J ) iff for each object C of C and each element

y ∈ G(C), there is a cover S of C such that for all f : D → C in S the element

yf is in the image of φD : F (D)→ G(D).

Therefore it will suffice to find a cover of G2 such that for each U in the

cover we have a lift ψ : U → G∇I such that

G∇I

U G2

Glψ

ιU

commutes. To find this cover we will perform a ‘continuous induction’ argument.

First as a ‘base case’ we will find for every element m ∈M an open set Uem

containing em and a smooth retraction of Uem into the image of e. Now

consider for each m ∈M the set Sm consisting of all elements g ∈ s−1m such

that there exists an open set Ug containing g and a source constant homotopy

F from Ug into the image of e. Our ‘induction step’ will be to show that for

all m ∈M the set Sm is both open and closed. Recall that every source fibre

s−1m is locally connected because it is a smooth manifold. This means that

s−1m is path connected iff s−1m is connected. Since Sm is non-empty by the

base case for s-path connected G the set Sm is the whole of s−1m. The cover

of G2 that we require is obtained by choosing for each g ∈ G one of the open

sets witnessing the fact that g ∈ Ssg.
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First, to help us construct the arrows ψ : U → G∇I , we describe how the

object G∇I admits a particularly simple description.

Lemma 5.1.2. Let G be a groupoid in E with arrow space G, object space M

and structure maps s, e, t, µ and i. Let X be an object of E and a : 1→ X be

any global element of X. Then GpdE(∇X,G) is isomorphic to the subobject

G(X)� GX consisting of elements φ ∈ GX such that the proposition

(φ(a) = esφ(a)) ∧ (∀x ∈ X. sφ(x) = sφ(a))

holds in the internal logic of E.

Proof. First we note that GpdE(∇X,G) is the subobject of GX×X × MX

consisting of the pairs (φ1, φ0) such that the proposition

(sφ1 = φ0π1) ∧ (tφ1 = φ0π2) ∧ (φ1∆ = eφ0) ∧ (µ(2×φ1) = φ1(π1, π3))

holds in the internal logic. Then we define the arrows ξ1 and ξ2:

G(X) GpdE(∇X,G)
ξ1

ξ2

as

ξ1(ψ) = ((x, y) 7→ ψ(y)ψ(x)−1, tψ)

(which is well typed because sψ is constant) and

ξ2(φ1, φ0) = (x 7→ φ1(a, x))

Now ξ1 does factor through the appropriate subobject because the following

equations hold:

s(ψ(y)ψ(x)−1) = tψ(x)

t(ψ(y)ψ(x)−1) = tψ(y)

ψ(x)ψ(x)−1 = etψ(x)

µ(ψ(y)ψ(z)−1, ψ(z)ψ(x)−1) = ψ(y)ψ(x)−1

and ξ2 does factor through the corresponding subobject because the following

equations

φ1(a, a) = e(φ0(a)) = e(φ0π1(a, a)) = e(sφ1(a, a))
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and

∀x ∈ X. sφ1(a, x) = φ0π1(a, x) = φ0(a) = φ0π1(a, a) = sφ1(a, a)

hold. Now it remains to show that these two arrows are mutual inverses:

ξ2(ξ1(ψ)) = ξ2((x, y) 7→ ψ(y)ψ(x)−1, z 7→ t(ψ(z)))

= (u 7→ ψ(u)ψ(a)−1)

= ψ

where the last equality is due to the equation ψ(a) = esψ(a). In addition

ξ1(ξ2(φ1, φ0)) = ξ1(x 7→ φ1(a, x))

= ((x, y) 7→ φ1(a, y)φ1(a, x)−1, z 7→ t(φ1(a, z)))

= ((x, y) 7→ φ1(a, y)φ1(x, a), z 7→ φ0(z))

= (φ1, φ0)

where the last equality in the first factor is due to µ(2×φ1) = φ1(π1, π3).

Notation 5.1.3. We will use the notation Ckε (z) for the cube (−ε, ε)k+z ⊂ Rk

that has sides of length 2 · ε and is centred at z. In the case ε = 1 we omit the

subscript and write simply Ck(z). In the case z = 0 we omit the brackets and

write Ckε .

Definition 5.1.4. Let s : G → M be an arrow in Man and x ∈ G. Then a

pair of open embeddings (ψx, φx) is an s-trivialisation at x iff

Ck+n G

Ck M

π

ψx

s

φx

commutes and ψx(0) = x.

Definition 5.1.5. A homotopy F from γ : C → G to γ′ : C → G is an arrow

in E
C

F−→ GI

such that G0F = γ and G1F = γ′. Note that this corresponds to a smooth

map C × I → G in Man.
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Definition 5.1.6. An s-fibrewise homotopy F with respect to an arrow s :

G→M is a homotopy such that

C GI G

GI M I GI

F

F

G0

G!

sI sI

commutes.

Remark 5.1.7. If G is a Lie groupoid in Man then the source map s : G→M

is (by definition) a submersion. This means that for all x ∈ G we can find a

trivialisation (ψx, φx).

Lemma 5.1.8. Let G be a Lie groupoid with source map s : G → M . Let

m ∈ M . Then there is an s-trivialisation (ψem, φem) at em such that eφem

factors through ψem.

Proof. Let (ψ, φ) be any s-trivialisation at em. Then if ν and ξ are defined in

the pullback

P Ck+n

Ck G

ν

ξ

ψ

eφ

then φπξ = sψξ = seφν = φν and so πξ = ν because φ is a monomorphism.

Now P is an open set of Ck and 0 ∈ P because eφ(0) = ψ(0). Since the

derivative of ν has full rank at 0 we can find an open embedding ι : Ck � P

such that νι(0) = 0. Now let µ be defined by the pullback

Ck+n Ck+n

Ck Ck

π

µ

π

νι

ρ

and ρ be induced by the pair (1P , ξι). Then eφνι = ψξι = ψµρ and the

s-trivialisation that we require is (ψem, φem) = (ψµ, φνι).

Lemma 5.1.9. For all m ∈M there is an s-trivialisation (ψem, φem) and an

s-fibrewise homotopy

F : Ck+n → GI

such that G0 ◦ F factors through e and G1 ◦ F = ψem.
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Proof. By Lemma 5.1.8 we can choose a s-trivialisation (ψem, φem) at em such

that eφem = ψemρ for some ρ. Now we define r = Ck+n → (Ck+n)I as

(z1, z2) 7→ (u 7→ (u(z1, z2) + (1− u)ρ(z1)))

and then the F that we require is F = ψIem ◦ r. We see that F is s-fibrewise

because (z1, z2) and ρ(z) have the same first k coordinates. We confirm that

G0 ◦ F = ψemρπ = eφemπ which factors through e and G1 ◦ F = ψem.

Lemma 5.1.10. Let (ψx, φx) be an s-trivialisation at some x ∈ G. Let

y = ψ((0, y2)) for some y2 ∈ Cn and (ψy, φy) be an s-trivialisation at y. Then

there are open embeddings ν, µ : Ck+n� Ck+n and a s-fibrewise homotopy

H : Ck+n → GI

such that G0 ◦H = ψyν and G1 ◦H = ψxµ.

Proof. First observe that Uy = ψ−1
x (ψy(C

k+n) ∩ ψx(Ck+n)) is an open set

around (0, y2) in Cn+k. Therefore we can choose an ε such that Ck+n
ε (0, y2)

is contained in Uy; we see immediately that Ck+n
ε (0, 0) is contained in Ck+n.

The µ that we require is the open embedding with image Ck+n
ε (0, 0). If η is the

open embedding with image Ck+n
ε (0, y2) then the ν that we require is ψ−1

y ψxη.

Let r : Ck+n → (Ck+n)I be defined by

r(z) = (u 7→ uµ(z) + (1− u)η(z))

The homotopy H that we require is then H = ψIxr. We see that H is s-fibrewise

because the first k coordinates of ν and η coincide. Finally we confirm that

G0 ◦H = ψxη = ψyν and G1 ◦H = ψxµ as required.

Proposition 5.1.11. Let G be a Lie groupoid which is s-path connected as a

topological space. Then the arrow Gl : GI → G2 = G is an epimorphism in E.

Proof. Using Lemma 5.1.2 and Proposition 5.1.1 it will suffice to find s-

trivialisations (ψi, φi) such that the images of the ψi cover G together with

s-fibrewise homotopies Fi : Ck+n → GI such that G0 ◦ Fi factors through

e : M → G and G1 ◦ Fi = ψi.
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To do this let Sm be the subset of s−1m consisting of all points x for

which there exists a s-trivialisation (ψx, φx) at x and s-fibrewise homotopy

F : Ck+n → GI such that G0 ◦ F factors through e and G1 ◦ F = ψx. We will

show that for all m ∈M the sets Sm are closed, open and inhabited. Once we

have established these three properties of Sm the proposition follows quickly

because the hypothesis that s−1m is connected implies that Sm = s−1m. Then

we can use the cover
⋃
x im(ψx) = G where ψx is the first component of any

s-trivialisation witnessing x ∈ Ssx.

To see that the set Sm is open let x ∈ Sm. This means that there exists

an s-trivialisation (ψx, φx) and a s-fibrewise homotopy K : Ck+n → GI such

that G0 ◦K factors through e and G1 ◦K = ψx. Now let y be any element in

the open set im(ψx)∩ s−1m. Using Lemma 5.1.10 we obtain open embeddings

ν, µ : Ck+n� Ck+n and an s-fibrewise homotopy

H : Ck+n → GI

such that G0 ◦H = ψyν and G1 ◦H = ψxµ. Then by concatenating Kµ with

the reverse of H we see that y ∈ Sm.

To see that the set Sm is closed suppose x /∈ Sm. Let Ux be any open set

containing x and let (ψx, φx) be any s-trivialisation at x such that im(ψx) is

contained in Ux. Let y ∈ im(ψx) ∩ s−1m and for the purpose of obtaining a

contradiction suppose further that y ∈ Sm. This would mean that there exists

a s-fibrewise homotopy

I : Ck+n → GI

such that G0◦I factors through e and G1◦I = ψy. But now using Lemma 5.1.10

we would obtain open embeddings ν, µ : Ck+n � Ck+n and an s-fibrewise

homotopy

H : Ck+n → GI

such that G0 ◦H = ψyν and G1 ◦H = ψxµ. Then by concatenating Iν with H

we would see that x ∈ Sm. This contradiction shows that im(ψx)∩ s−1m is an

open set containing x which is disjoint from Sm. Hence that the complement

of Sm is open.

The set Sm is inhabited because em ∈ Sm by Lemma 5.1.9. Hence Sm =

s−1m and Gl is an epimorphism as required.
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5.2 Path Connectedness of Jet Part

As in the previous section we let E be any well-adapted model. We fix a Lie

groupoid G in E that has arrow space G, object space M and structure maps

s, t, e and µ. In Lemma 5.1.9 we have shown that for all m ∈M there is an

s-trivialisation (ψem, φem) and a s-fibrewise homotopy

F : Ck+n → GI

such that G0 ◦ F factors through e and G1 ◦ F = ψem. In this section we need

to show that if we pull back ψem along ι∞ to obtain a subobject ψ̃em of G∞ we

can choose F such that its restriction to ψ̃em factors through G∞. To do this

we will need to use Proposition 2.2.27 to show that a certain arrow is jet dense.

In turn this means that we need to show that the relation ≈ is symmetric on

the object (G, s) of E/M . We first introduce the idea of a Mal’cev operation

to show that ≈ is symmetric on Cn. This shows that every Lie groupoid G
has an open cover such that for each element of this cover the relation ≈ is

symmetric. Then we show that this does indeed imply that the relation ≈ is

symmetric on (G, s).

Definition 5.2.1. Let B be an object of a finitely complete category. Then

B admits a Mal’cev operation iff there exists an arrow t : B3 → B such that

t(x, x, y) = y and t(x, y, y) = x.

Lemma 5.2.2. For all n the space Cn admits a Mal’cev operation in Man.

Proof. Let a, b ∈ Cn and U = {(a, u, b) : a + b − u /∈ Cn} ⊂ C3n. Construct

a smooth function φ : C3n → I which vanishes on the closed set U and

attains the value 1 on the closed set{(a, u, b) : (u = a) ∧ (u = b)}. This is

possible by Corollary 2.5 in [29]. Then the operation t : C3n → Cn given by

(a, u, b) 7→ φ(a, u, b)(a+ b− u) is Mal’cev.

Lemma 5.2.3. Let B be an object of E/M admitting a Mal’cev operation.

Then ∼ and hence ≈ is symmetric on B in E/M .

Proof. Suppose that a ∼ b. Then there exists DW ∈ Spec(Weil), φ ∈ BDW and

d ∈ DW such that φ(0) = a and φ(d) = b. Define ψ ∈ BDW by u 7→ t(a, φ(u), b).
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Then ψ(0) = t(a, a, b) = b and ψ(d) = t(a, b, b) = a so we have that b ∼ a as

required.

Lemma 5.2.4. Let g : V � G be a jet-closed arrow in E/M and suppose that

the relation ≈ is symmetric on G. Then the relation ≈ is symmetric on V

also.

Proof. Let a ≈ b in V . Then by Remark 2.2.15 ga ≈ gb in G. Since ≈ is

symmetric on G we see that gb ≈ ga. But by Lemma 2.2.20 we have that b ≈ a
as required.

Lemma 5.2.5. Let (fi : Ui� B)i be a cover of B in E/M such that each of

the fi is jet closed. Suppose that for all i the relation ≈ is symmetric on Ui.

Then the relation ≈ is symmetric on B also.

Proof. Suppose that a ≈ b in B. Since the fi are jointly epimorphic there

exist i ∈ I and x ∈ Ui such that fi(x) = a. So there exists a y ∈ Ui such that

fi(y) = b because fi is jet closed. Then Lemma 2.2.20 tells us that x ≈ y and

hence y ≈ x because ≈ is symmetric on Ui. But then Remark 2.2.15 tell us

that b = fi(y) ≈ fi(x) = a as required.

Lemma 5.2.6. Let G be a Lie groupoid and (fi : Ui� G)i be a cover of G in

E such that for each i the open set Ui is trivial for s. Let gi be the inclusions

s(Ui)�M . Then the relation ≈ is symmetric on (Ui, gis) in E/M .

Proof. We will show that (Ui, gis) admits a Mal’cev operation. The threefold

product (Ui, gis)× (Ui, gis)× (Ui, gis) in E/M is given by

B3 = (Ui ×s s Ui ×s s Ui, gisπ1)

where π1 is the projection from the limit onto the first factor. Since Ui is trivial

for s we see that the arrow s : Ui → s(Ui) is isomorphic to π : Ck × Cn � Ck

in E via some ψi and φi. This means that

B3 ∼= (Ck × C3n, giφ
−1
i π)

which admits a Mal’cev operation by Lemma 5.2.2. Therefore (Ui, gis) admits

a Mal’cev operation and so ≈ is symmetric on (Ui, gis) as required.
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Corollary 5.2.7. Let G be a Lie groupoid. Then the relation ≈ is symmetric

on (G, s) in E/M (the object of arrows of G).

Proof. Follows immediately from combining Lemma 5.2.6 with Lemma 5.2.5.

Lemma 5.2.8. Let (Ux� G)x∈X be a family of open subsets of G which cover

e(M) in E. Let ι denote the inclusion
⋃
x Ux� G. Then there is an inclusion

j : G∞�
⋃
x Ux such that ι ◦ j = ι∞.

Proof. By hypothesis we have an inclusion M �
⋃
x Ux such that ι ◦m = e.

Since the inclusion ι is jet closed in E/M the square

(M, 1) (
⋃
x Ux, s)

(G∞, s∞) (G, s)

e∞

m

ι
∃!j

ι∞

has a unique (monic) filler.

Corollary 5.2.9. Let Vx be defined by the pullback

(Vx, s) (Ux, s)

(G∞, s∞) (G, s)

ιx

ι∞

then because colimits are stable under pullback the bottom right square in

(G∞, s∞)

(
⋃
x Vx, s∞) (

⋃
x Ux, s)

(G∞, s∞) (G, s)

j

1G∞

ι∞

is a pullback. But then the arrow induced by the pair (1G∞ , j) : G∞ →
⋃
x Vx

is an isomorphism and hence (ιx : Vx� G∞)x∈X is a cover of G∞.

Proposition 5.2.10. Let G be a Lie groupoid and G∞ its jet part. Then the

Gl : GI
∞ → G2

∞ = G∞ is an epimorphism.
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Proof. We again use Proposition 5.1.1 to see that it will suffice to find a cover

(Vx� G∞)x∈X and s-fibrewise homotopies K : Vx → GI∞ such that G0
∞ ◦K

factors through e∞ : M � G∞ and G1
∞ ◦K = ιx : Vx� G∞.

Let (ψem, φem) and F be the s-trivialisation and homotopy obtained in

Lemma 5.1.9 and Uem = im(ψem). Thus we have that Uem is an open set that

is trivial for s at x. Let Vem and Wem be defined by the iterated pullback:

(Wem, ι) (Vem, s∞) (Uem, s)

(M, 1) (G∞, s∞) (G, s)

u1

e∞ ιG

Then by Proposition 2.2.27 and Lemma 5.2.4 we deduce that u1 : (Wem, ι)�

(Vem, s∞) is jet dense and hence the arrow

1(I×M,π2) × u1 : (I ×Wem, ι ◦ π2)→ (I × Vem, s∞ ◦ π2)

is also jet dense. By Corollary 5.2.9 we have that (Vem� G∞)m∈M is a cover

of G∞ and this is the one we will use to prove the proposition.

Now we observe that the restriction of F to Wem is constant at the inclusion

Wem� G:

F |Wem = Wem� G
G!

−→ GI

This means that the outer square of

(I ×Wem, ι ◦ π2) (I ×G∞, s∞ ◦ π2) (G∞, s∞)

(I × Vem, s∞ ◦ π2) (I × Uem, s ◦ π2) (G, s)

1(I×M,π2)×u1

π2

ιG∃!Ǩ

F̌

commutes and so there exists a unique filler Ǩ such that the transpose K

is a s-fibrewise homotopy, G0
∞ ◦ K factors through e∞ : M � G∞ and

G1
∞ ◦K = ιem : Vem� G∞ as required.

5.3 Simply Connectedness

At present I have not been able to establish that classical s-simply connected Lie

groupoids are E-simply connected. I suspect that the result can be established

with similar arguments to those in Section 5.1 that prove that s-path connected
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Lie groupoids are E-path connected. The first additional difficulty that must

be overcome to prove the simply connected version is to find some way of

covering GO in E . The covers of G were in bijection with open covers of the

underlying smooth manifold of G but the covers of GO corresponding to pulling

back covers of G along Gι1l : GO → G2 are too coarse to be useful. Instead we

will describe how to construct a cover of every generalised element of GO using

the compact open topology on the set Γ(GO) of global sections of GO. We first

relate the compact open topology on Γ(GO) to a certain class of subobjects of

GO called Penon open subobjects. Then we relate Penon open subobjects of

a representable object of Egerm with the Dubuc open sets of Definition 1.2.7.

Having thus established a satisfactory way to cover generalised elements of

GO we proceed to prove that every simply connected Lie group G is E-simply

connected.

The second additional difficulty in proving the simply connected version is

keeping track of the changes of chart. Intuitively speaking, the proof of the

path connected version involved translating an open set in a source constant

manner ‘in parallel’ to a given path. Since it was necessary to work in an

s-trivialisation to make sense of how to move ‘in parallel’ we were required to

change chart as we moved along the path. This was not too difficult to keep

track of as we were only working in one dimension (the direction along the

path). By contrast to prove the simply connected version it is necessary to

translate an open set around a path in a source constant manner in parallel to

a homotopy. This appears to require keeping track of s-trivialisations in two

dimensions which I have not been able to successfully write down. Therefore

we make the conjecture

Conjecture 5.3.1. Every s-simply connected Lie groupoid G is E-simply

connected.

which, if true, would imply that the definition of E-simply connected

groupoid is a legitimate generalisation of the definition of s-simply connected

Lie groupoid. As mentioned above we can prove the special case of this

conjecture when the base space M = 1 which corresponds to classical Lie

theory.

First we turn to the problem of constructing an appropriate cover of GO.
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Definition 5.3.2. A Penon open subobject is a monomorphism m : A� B

in a topos E such that the proposition

∀a ∈ A. ∀b ∈ B : (b ∈ A) ∨ (¬(ma = b))

holds in the internal logic of E .

Lemma 5.3.3. The collection of Penon open subobjects is stable under pullback.

That is to say if m is a Penon open subobject and

C A

D B

g

n m

f

is a pullback in E then n is a Penon open subobject.

Proof. The object C is carved out of D as the subobject

C = {d ∈ D : fd ∈ A}

Now let c ∈ C and d ∈ D. Since m is a Penon open subobject we have that

(fd ∈ A) ∨ (¬(mgc = fd))

holds in the internal logic of E . But mgc = fnc and clearly

¬(fnc = fd) =⇒ ¬(nc = d)

hence

(d ∈ C) ∨ (¬(nc = d))

as required.

The following is Corollary 8 in [11].

Theorem 5.3.4. Let [n, I] be an object of Cgerm and let X ⊂ [n, I] be any

subobject in Egerm. Then X is Penon open iff it is of the form X = ιU ∩ [n, I]

for some U ⊂ Rn open.

Corollary 5.3.5. If X � [n, I] is Penon open then it is open in the sense of

Definition 1.2.7.



5.3. SIMPLY CONNECTEDNESS 147

Next we recall some theory from [4] that relates the smooth compact open

topology on global sections with Penon open subobjects. We first note that

any function f ∈ C∞(Rp) can be thought of as a function f ∈ C∞(Rp+n) by

taking f(x, t) = f(x) for all t ∈ Rn.

Definition 5.3.6. An ideal J / C∞(Rp) is said to have line determined exten-

sions iff it satisfies the following condition: for every n ∈ N and f ∈ C∞(Rp+n),

f ∈ J(x, t) iff for every fixed a ∈ Rn, f(x, a) ∈ J .

Example 5.3.7. The ideal of all smooth functions vanishing on some closed

subset of Rp has line determined extensions and hence by Remark 3.3.6 we see

that the ideal defining the space Ω has line determined extensions.

Theorem 5.3.8. Let X = [p, J ] and Y = [n, I] in Cgerm and assume that J

has line determined extensions. Then the mapping U 7→ Γ(U) from the set

of subobjects of Y X to the set of subobjects of Γ(Y X) determines a bijection

between the set of Penon open subobjects of Y X and the set of smooth compact

open subsets of Γ(Y X).

Proof. Theorem 1.11 in [4].

Definition 5.3.9. The geodesic path between two points x, y ∈ Rn is the path

defined by a 7→ (1 − a)x + ay. The geodesic homotopy between two paths

γ, γ′ ∈ (Rn)I is the homotopy defined by (a, b) 7→ (1− a)γ(b) + aγ′(b).

Remark 5.3.10. We put the smooth compact open topology on the set Γ(GI).

Then we give

Γ(GI ×GI) ∼= Γ(GI)× Γ(GI)

the induced product topology and

Γ(GΩ)� Γ(GI)× Γ(GI)

the induced subspace topology. Similarly for Γ(GB).

Proposition 5.3.11. Let G be a simply connected Lie group. For all arrows

φ : Ω → G in E such that φ(0) = e we can find a Penon open subobject
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Φ : V → GΩ containing φ such that for all v ∈ V we have Φ(v)(0) = e and a

smooth map Ψ : V → GB such that

GB

V GΩ

GιΨ

Φ

commutes.

Proof. First we fix a filler H : B → G of φ which we know exists because G

is simply connected. Let ψ : Cn � G be an open embedding with ψ(0) = e

and let im(ψ) = U . Then we define the open set V as the set of all χ : Ω→ G

such that for all a ∈ Ω the element ξ(a) = φ(a)−1χ(a) is in U . In other words

V = {χ ∈ Γ(GΩ) : ∀a ∈ Ω. χ(a) ∈ φ(a)U}

and so is a well-defined open set in Γ(GU ). By Theorem 5.3.8 the open set V

is a Penon open subobject of GΩ in E . Now for all χ ∈ V the map ξ : Ω→ G

lands entirely in U which is isomorphic to an open cube in Rn. So we can

define an arrow g1 : Ω → G as two copies of the geodesic path from e to

ξ(1). Note that ξ(0) = e by construction. Define the arrow g2 : Ω → G by

g2(a) = φ(1)g1(a). In addition we can find a geodesic homotopy

F : µ(ξ, δξ(1))⇒ µ(δe, g1)

where µ is the concatenation operation on paths and δx denotes the constant

path at x ∈ G. Then the homotopy F2 = µ(φ, δφ(1)) · F is a homotopy

between µ(χ, δχ(1)) and µ(φ, g2) where · denotes pointwise multiplication of

paths. Therefore to find a filler of µ(χ, δχ(1)) it will suffice to find a filler of

µ(φ, g2). But we see that µ2(H, δg2) is a filler of µ(φ, g2). By a straightforward

reparametrisation we obtain a filler for χ. Now we remark that the filler ψχ

varies smoothly with χ and so we obtain a smooth map Ψ : V → GB.

Corollary 5.3.12. Every simply connected Lie group G is Egerm-simply con-

nected.

Proof. Let α : X → GΩ be an arrow such that X is a representable object

in Egerm and G0α factors through e. By Proposition 5.1.1 it will suffice to
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find a cover (ιi : Xi → X)i∈I such that for all i there exists β : Xi → GB

such that Gιβ = αιi and for all xi ∈ Xi we have that β(xi)(0, 0) = e. Now

for every global element x ∈1 X we obtain a global element φ = αx ∈1 G
Ω

such that φ(0) = e. Hence by Proposition 5.3.11 above there exists a Penon

open subobject Φ : V � GΩ containing φ such that for all v ∈ V we have

Φ(v)(0) = e and a smooth map Ψ : V → GB such that the top triangle in

GB

V GΩ

Wx X

GιΨ

Φ

αx

nx

α

commutes and for all v ∈ V we have Ψ(v)(0) = e. Then if we pullback Φ

along α we obtain by combining Corollary 5.3.5 and Lemma 5.3.3 an open

subobject nx : Wx � X that contains x. Then the cover that we require

is (nx : Wx → X)x∈1X and the lift β = Ψαx. By construction we have that

GιΨαx = αnx and for all w ∈Wx we have that Ψαxw(0, 0) = e as required.

5.4 Integral Completion

Recall that our motivation for introducing the integral factorisation system in

Section 2.3.3 was to provide in the topos E an axiomatic alternative to solving

time-dependent left-invariant vector fields on a Lie groupoid. A groupoid X
in which it is always possible to solve such vector fields satisfies the condition

that X∇I∞ ∼= X∇I in Gpd(E). Indeed this is an assumption that we required in

our proof of Lie’s second theorem. In the first part of this section we relate the

global elements of each of the objects X∇I∞ and X∇I to established structures

in classical Lie theory. The global elements of X∇I are straightforwardly seen

to be the G-paths that can be found in for example [7]. The only complication

in identifying global elements of X∇I∞ with the A-paths found in [7] is that

Lie algebroids are only concerned with linear infinitesimals and ∇I∞ involves

arbitrary jets. Recall that ∇I∞ has as its arrow space the subspace of I2

consisting of all the pairs (a, b) ∈ I2 such that a ≈ b. It turns out however

that there is a way of formally integrating vector fields in synthetic differential
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geometry for a certain well-behaved type of object of E called a microlinear

space (of which all manifolds are examples). The idea (which can be found

for example in [20]) is that an action of the additive group D∞ is completely

determined by the subobject D. In order to use this idea we need to first need

to make explicit the relationship between groupoid homomorphisms ∇I∞ → G
and actions of the additive group D∞.

Definition 5.4.1. The object A(G) of A-paths associated to a Lie groupoid G
is the subobject of GI×D ×M I consisting of all the pairs (φ, γ) ∈ GI×D ×M I

such that the proposition

∀a ∈ I. ∀d ∈ D. (sφ = γ) ∧ (tφ(a, d) = γ(a+ d)) ∧ (φ(a, 0) = esφ(a, 0))

holds in the internal logic of E . A classical A-path is just a global element of

the object of A-paths in E .

Remark 5.4.2. We can rephrase this definition in terms of reflexive graphs

in E . Indeed

A(G) ∼= ReflE(ID, uG)

where ID is the reflexive graph

ID = I ×D I
+

e

π1

in E , ReflE denotes the E-valued hom of reflexive graphs internal to E and uG
is the underlying reflexive graph of G.

Remark 5.4.3. Since GD ∼= TG the classical A-paths are precisely the A-paths

described in Section 1.1 of [7].

Definition 5.4.4. A microlinear space M in E is an object of E which satisfies

the following property. If D : J → E is a diagram in E such that for all objects

j of J the object D(j) is the spectrum of a Weil algebra and

limDR
D(j) ∼= RDW

in E for some Weil spectrum DW then

limDM
D(j) ∼= MDW

in E also.
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Example 5.4.5. All manifolds in the image of the full and faithful embedding

ι : Man→ E are microlinear.

Lemma 5.4.6. Let k ∈ N and consider the arrows f1, ..., fk : Dk−1 → Dk

defined by

fi(d1, ..., dk) = (d1, ..., di−1, 0, di, ..., dk−1)

Then for any microlinear space G the arrow

GDk
G+

−−→ GD
k

is the joint equaliser of f1,...,fk.

Proof. Let φ ∈ RDk such that Rfiφ = Rfjφ for all i, j ∈ {1, ..., k}. In particular

this means that Ruiφ = Rujφ where ui : D → Dk is the inclusion d 7→
(0, ..., 0, d, 0, ..., 0) in which the non-zero entry in the k-tuple is in the ith

position. Now using the Kock-Lawvere axiom we deduce that φ is of the form

φ(d1, ..., dk) = Σk
i=0ai · ei(d1, ..., dk)

where ai ∈ R and ei is the ith symmetric polynomial

ei(d1, ..., dk) = Σ1≤j1<j2<...<ji≤kdj1dj2 ...dji

Now the result follows from the fact that (d1 + d2 + ...+ dk)
i is a multiple of

ei(d1, d2, ..., dk) whenever d2
j = 0 for all j.

The following proposition is a generalisation of Remark 3.10 in Chapter V

of [28].

Proposition 5.4.7. The arrow

G∇I∞ Gι∞×I−−−−→ ReflE(ID, uG)

is an isomorphism.

Proof. We construct an inverse ν for Gι∞×I . So let (φ, ξ) ∈ ReflE(ID, uG).

Then the arrow ηk : GD → GD
k

defined by

(d1, d2, ..., dk, φ) 7→ φ(a+ Σn−1
i=1 di, dn)...φ(a+ d1, d2)φ(a, d1)
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satisfies the condition Gfiηk = Gfjηk for all i, j ∈ {1, ..., k} for the fi defined in

Lemma 5.4.6. Hence we have that ηk factors through GDk as νk : GD → GDk .

Since D∞ =
⋃
kDk and

vk(φ)(d1, ..., dk−1, 0) = vk−1(φ)(d1, ..., dk−1)

the family (νk)k∈N>0 induces an arrow ν : GD → GD∞ . Now since φ is a

reflexive graph homomorphism ν(φ) is also. We have that ν(φ) preserves

composition by construction.

Corollary 5.4.8. We have an isomorphism A(G) ∼= G∇I∞.

Definition 5.4.9. The object Path(G) of G-paths of a Lie groupoid G is the

object G∇I in E . A classical G-path is a global element of G∇I i.e. an arrow

∇I → G.

Remark 5.4.10. By Lemma 5.1.2 the object of G-paths is the same as the

subobject of GI consisting of all the elements ψ ∈ GI such that the proposition

(ψ(0) = esψ(0)) ∧ (∀a ∈ I. sψ(a) = sψ(0))

and hence our classical G-paths are precisely the G-paths described in the

introduction of [7].

Lemma 5.4.11. For every groupoid G in E and DW ∈ Spec(Weil) we have a

groupoid GDW that has underlying reflexive graph

GDW MDW
sDW

eDW

tDW

composition µDW and inverse iDWG .

Lemma 5.4.12. For all manifolds M and Weil presentations W the object

MDW is also a manifold. The object MDW is the image under the full and

faithful embedding ι : Man→ E of TWM which is called (if we pair it with the

projection M0 : MDW →M) the Weil bundle of M with respect to W .

Proof. We refer to Theorems 35.13 and 35.14 in [21].
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The next Lemma is a sketch of the proof that Proposition 1.1 in [7] is

unaffected by smooth dependence on a parameter.

Lemma 5.4.13. Let G be a groupoid and X a smooth manifold. Then there

is a bijection between the set S1 of smooth maps

X × I (F1,F2)−−−−→ TG×M

in Man such that

d(sF1(x, a))

da
= 0,

d(tF1(x, a))

da
=
dF0(x, a)

da
and πF1(x, a) = eF0(x, a)

hold and the set S2 of smooth maps

X × I ψ−→ G

in Man such that

ψ(x, 0) = esψ(x, 0) and ∀a ∈ I. sψ(x, a) = sψ(x, 0)

hold.

Proof. (Sketch) Let F ∈ S1. First we extend F1(x, a) to any map α : X × I ×
M → TG such that α(x, a, F0(x, a)) = F1(x, a). Then define Φ : S1 → S2 by

sending F to the unique solution ψF : X × I → G of the differential equation

dψF (x, a)

da
= (DRψF (x,a))α(x, a, tψF (x, a)) (5.1)

with initial condition ψ(x, 0) = F0(0) where Rg denotes precomposition with g

and D denotes the derivative. Note that because the derivative of sF1 with

respect to a is 0 the solution ψ has constant source. In the other direction

define Ψ : S2 → S1 as taking

ψ 7→
(

(DRψ(x,a)−1)
ψ(x, a)

da
, tψ(x, a)

)
where we note that the three conditions defining S1 hold by construction. Now

ΦΨ is the identity by the uniqueness of the solution ψ. In addition we calculate

ΨΦ(F (x, a)) =

(
(DRψF

dψF (x, a)

da
), tψF (x, a)

)
= (α(x, a, tψF (a)), tψF (x, a))

= (α(x, a, F1(x, a), F0(x, a)) = F (x, a)

as required.
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Proposition 5.4.14. For every Lie groupoid G the arrow G∇I∞ Gι∞−−−→ G∇I is

an isomorphism in the Cahiers topos.

Proof. It will suffice to find for all representable X×DW in the Cahiers topos an

inverse to the component Gι∞
X . Furthermore since GDW is a Lie groupoid for all

DW ∈ Spec(Weil) it will suffice to consider generalised elements with domain

X. We use the identification G∇I∞ ∼= A(G) established in Corollary 5.4.8. So

let φ ∈X A(G). Then we have the bijections

X
φ−→ A(G) in E

X → GI×D ×M I in E

X × I F̃−→ GD ×M in E
X × I F−→ TG×M in Man

where F satisfies the conditions

d(sF1(x, a))

da
= 0,

d(tF1(x, a))

da
=
dF0(x, a)

da
and πF1 = eF0

and we have neglected to state the conditions we should impose on the second

line. So then we use Lemma 5.4.13 to deduce that we have a bijection

X
φ−→ A(G)

X × I
ψφ−−→ G

such that

ψφ(x, 0) = esψφ(x, 0) and ∀a ∈ I. sψφ(x, a) = sψφ(x, 0)

hold. But this is precisely what it means to be a generalised element of G∇I

at stage of definition X. It remains to check that

F̃1(x, a)(d) = ψφ(x, a+ d)ψφ(x, a)−1

= e+ d
∂ψφ(x, a)

∂a
ψφ(x, a)−1

which is equivalent to

F1(x, a) = (DRψφ(x,a)−1)
∂ψφ(x, a)

∂a

which holds by the construction of ψφ in Lemma 5.4.13.
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Now that we have established that Gι∞ is an isomorphism in the Cahiers

topos it remains to prove the following Proposition.

Proposition 5.4.15. If Gι∞ : G∇I → G∇I∞ is an isomorphism in a well-

adapted model E then it is an isomorphism of groupoids also.

Proof. We need to show that natural transformations extend uniquely i.e.:

∇I∞ × 222 G

∇I × 222

∀Φ

ι ∃!Ψ

Let ψ0, ψ1 be the unique lifts of φ precomposed with the two inclusions of 1

into 222. If for all x→ y in ∇I the diagram

Φ(x, 1) Φ(y, 1)

Φ(x, 0) Φ(y, 0)

ψ1(x→y)

Φ(x,0→1) Φ(y,0→1)

ψ0(x→y)

(5.2)

commutes then we can define Ψ(x→ y, 0→ 1) to be this common value. To

this end define θ : ∇I →M to take x→ y to:

Φ(x, 1) Φ(y, 1)

Φ(x, 0) Φ(y, 0)

Φ(x,1→0) Φ(y,0→1)

ψ0(x→y)

when we restrict to ∇I∞ (i.e. take y = x+ d) we see that:

Φ(x, 1) Φ(x+ d, 1)

Φ(x, 0) Φ(x+ d, 0)

Φ(x,1→0) Φ(x+d,0→1)

Φ(x→x+d,0)

=
Φ(x, 1) Φ(x+ d, 1)

Φ(x→x+d,1)

and so by the uniqueness of lifts θ = ψ1 and so the diagram (5.2) commutes.





Conclusion

In this thesis we have constructed an adjunction

Cat∞(E) Catint(E)

(−)int

⊥

(−)∞

(5.3)

which generalises the classical Lie adjunction between the category of formal

group laws and the category of Lie groups. Moreover the category of local

objects Cat∞(E) and the category of global objects Catint(E) are coreflective

and reflective subcategories respectively of the larger category Cat(E). We

showed that when we restrict the domain of (−)∞ to the integral complete

and E-simply connected categories that have E-path connected jet part then

(−)∞ becomes full and faithful. We also showed how to modify this theory to

create an adjunction involving groupoids rather than categories and made the

first steps towards a proof that all source simply connected Lie groupoids are

E-simply connected, integral complete and have E-path connected jet part.

A natural goal for future research would be to complete the description of

the relationship between the groupoid version of Diagram 5.3 and the adjunction

underlying classical multi-object Lie theory. This would involve proving that

all source simply connected Lie groupoids are E-simply connected and removing

the dependence on special properties of the Cahiers topos from the proof that

all Lie groupoids are integral complete. In addition the relationship between

the jet part G∞ of a Lie groupoid G and the Lie algebroid g of G could be

investigated. In fact the natural counterpart with which to compare G∞ would

be a multi-object generalisation of a formal group law and hence it would be

interesting to compare G∞ to the local objects constructed in [9] and [30]. One

157
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could similarly try to find a classical counterpart to the symmetric jet part

construction which is possible in the Cahiers topos.

For future research in the synthetic theory itself it would be logical to look

for a characterisation of the jet categories for which the unit of the adjunction

in Diagram 5.3 is an isomorphism. For more detail see Section 4.2. Finally since

the theory of integrating Lie algebroids has application in the area of Poisson

geometry it would be interesting to study this formulation of Hamiltonian

mechanics in terms of infinitesimals. A first step in this direction might be a

treatment of the correspondence between Poisson manifolds and symplectic

groupoids (that can be found in for example [36]) using synthetic differential

geometry.
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