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1 Introduction

“In order to treat mathematically the decisive abstract general rela-
tions of physics, it is necessary that the mathematical world picture
involve a cartesian-closed category E of smooth morphisms between
smooth spaces.”
F. William Lawvere in [Lawvere, 1980].

Synthetic Differential Geometry makes rigorous the notions of infinitesimal ob-
ject, infinitesimal action and infinitesimal transformation which are often useful
when thinking heuristically about Differential Geometry.

Instead of working in the category Man that has smooth manifolds as objects
and smooth maps as arrows, in Synthetic Differential Geometry one works in
a certain cartesian closed category1 E , which contains appropriately defined in-
finitesimal objects. The cartesian closed property is important because it means
that certain analytic concepts can be replaced by standard category-theoretic
constructions.

As an example of this, tangent vectors of an object M are defined as arrows
from a certain infinitesimal object D to M . Using the fact that E is cartesian
closed we define the tangent bundle of M to be MD. Then the existence of the
adjunctions

M→MD

D×M→M
and

D×M→M
D→MM

will allow us to identify rigorously (rather than just intuitively) the following:

(i) vector fields over M ,

(ii) infinitesimal actions on M and

(iii) infinitesimal transformations of M .

The ability to easily switch between these different perspectives is used in the
applications in Sections 3.4 and 3.5. In the former working with infinitesimal
actions provides an alternative way of solving a particular differential equation
and in the latter viewing vector fields as infinitesimal transformations will give
a clear geometric meaning to the Lie bracket defined there.

However, we shall see (in Section 3.1) we cannot make rigorous these ideas in
Set, the category of sets and functions (or in fact any other Boolean topos). The

1In fact in a smooth topos as defined in Section 3.2.
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reason for this is that the fundamental axiom required for Synthetic Differential
Geometry contradicts the Law of the Excluded Middle:

>`~x(φ ∨ (¬φ))

(where we have assumed an appropriate deductive system and definition of a
formula φ in the internal logic of a category). Therefore we must work in a
category whose internal logic is intuitionistic. Section 2 will discuss the inter-
pretation of logic in a category in more detail.

The approach taken in this essay will be to first give an axiomatic description
of a smooth topos (see Section 3.2) in which there exist infinitesimal objects
with the appropriate properties. The internal logic of this topos is intuitionis-
tic. Then the axiomatic theory will be used in two applications (Sections 3.4
and 3.5). Finally Sections 4 and 5 will build up the theory needed to construct
a model of a smooth topos. The existence of this model will justify our previous
work.

The model we will build also satisfies the property of being well-adapted (which
is explained at the beginning of Section 5). This property is an important one
because it implies that results proved in this model of a smooth topos (and
therefore any properties that follow from the axiomatic description of a smooth
topos) may be interpreted as results about smooth manifolds.
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2 Generalities in Categorical Logic

This section contains generalities in categorical logic that will be required in the
rest of the essay.

It builds towards the definition of the syntactic category of an algebraic theory
(Definition 2.13). This category will be used to define the k-algebras (for a ring
k) and the C∞-algebras that play a central rôle in the axiomatic theory and the
model building.

The treatment of the theory in the first three subsections is similar to Chapter
D1 of Volume 2 of [Johnstone, 2006]. [Awodey and Bauer, 2009] was also used,
in particular for subsection 2.4. The definitions and notations in subsection 2.5
can also be found in [Kock, 2006].

2.1 Signatures

Definition 2.1. A signature Σ consists of:

• A finite set of sorts X1, X2, ..., Xn.

• A collection of function symbols. Each function symbol f is assigned a list
of sorts X1, X2, ..., Xk (with the Xi not necessarily distinct) as arguments
and a single sort Y as output.

• A collection of constants each of which is assigned a sort.

• A collection of relation symbols. Each relation symbol R is assigned a list
of sorts X1, X2, ..., Xk (with the Xi not necessarily distinct and k 6=0) as
a context.

An interpretation I of a signature Σ in a category C with finite products is as
follows:

• The interpretation of each sort is an object of the category. We will write
the object interpreting Xi as XI

i .

• The interpretation of a function symbol with arguments X1, X2, ..., Xk

and output Y is an arrow f I

XI
1×XI

2×...×XI
k Y I

f I

(2.1)

in the category. We will abuse notation by specifying the arguments and
output of a function symbol using a diagram like 2.1 but without the
superscripts.
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• The interpretation of a constant requires C to have a terminal object 1.
The interpretation of a constant assigned the sort Xk is then an arrow:

1→XI
k

of C.

• The interpretation of a relation symbol with domain X1, X2, ..., Xk is a
subobject of XI

1×XI
2×...×XI

k :

[(x1, x2, ..., xk)|Rx1x2...xk]I XI
1×XI

2×...×XI
k

RI

(2.2)

At the moment [(x1, x2, ..., xk)|Rx1x2...xk]I is simply a symbol for the
domain of the subobject. We will abuse notation by specifying the context
of a relation symbol using a diagram like 2.2 but without the superscripts.

Example 2.2. The signature of rings Σring has:

• A single sort k.

• The function symbols:

1 k k×k
1

0

+

×

• The relation symbol

[(k1, k2)|k1 = k2] k×k=

So an interpretation I of the signature of rings in a category is simply:

• An object kI .

• Arrows:

1I kI kI×kI
1I

0I

+I

×I

• A subobject:

[(k1, k2)|k1 = k2]I kI×kI
=I
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2.2 Terms

Each sort in a signature Σ is equipped with arbitrarily many variables. We will
write x∈X to denote that x is a variable of sort X.

Definition 2.3. A context is a list of variables ~x = (x1, x2, ..., xk) such that all
the xi are distinct but several xi may be of the same sort.

Definition 2.4. Σ-terms (in context) are defined inductively as follows:

• Let x∈X and ~x be a context containing x. Then the variable in context
(~x|x) is a term with output X.

• Let

X1×X2×...×Xk Y
f

be a function symbol of Σ and (~zi|ti) be terms with outputs Xi. Without
loss of generality we may assume that there are no repeated variables in
the concatenation of the ~zi: if there were we could swap them for unused
variables of the same sort. Then the expression

(~z|ft1t2...tk)

is a term with output Y where ~z is the concatenation of the ~zi (which we
will write z1 : z2 : ... : zk).

The interpretation of the variable in context ((x1, x2, ..., xk)|xi) in a category is
the ith projection:

XI
1×XI

2×...×XI
k XI

i

xi

The interpretation of the term (~z|ft1t2...tk) is simply the composition:

(~z|ft1t2...tk)I = f I◦((~z1|t1), (~z2|t2), ..., (~zk|tk))

Example 2.5. The expression t = ((k1, k2, k3)|(k1×k2) + k3) (where ki∈k) is a
Σring-term. Consider the interpretation I in Example 2.2. Then the interpre-
tation of t is the composite:

kI×kI×kI kI×kI kI
(×I , k3) +I

where the k3 is the projection from the third factor.

2.3 Formulae

Definition 2.6. An atomic formula (in context) is an expression of the form
[~y|Rt1t2...tk] where

[(x1, x2, ..., xk)|Rx1x2...xk] X1×X2×...×Xk
R
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is a relation symbol, (~yi|ti) are terms with output Xi and again ~y = ~y1 : ~y2 :
... : ~yk with any repeats removed.

Given an interpretation I of a signature Σ we justify our notation by defining
the interpretation of an atomic formula [~y = (y1, y2, ..., ym)|Rt1t2...tk] (where
yi∈Yi) to be the subobject:

[~y|Rt1t2...tk]I Y I1 ×Y I2 ×...×Y Im

defined by the pullback:

[~y|Rt1t2...tk]I Y I1 ×Y I2 ×...×Y Im

[(x1, x2, ..., xk)|Rx1x2...xk]I XI
1×XI

2×...×XI
k

RI

(t′1, t
′
2, ..., t

′
k)

where t′i are the arrows defined as the precomposition of (~yi|ti)I with the ap-
propriate projection. i.e. the projection from Y1×Y2×...×Yn to the domain of
(~yi|ti)I .

Example 2.7. Consider the interpretation I of the signature of rings Σ in
Example 2.2. Then ((k1, k2)|k1×k2 = k2×k1) is an atomic formula given by the
upper arrow in the pullback:

[(k1, k2)|k1×k2 = k2×k1]I kI×kI

[(k1, k2)|k1 = k2]I kI×kI
RI

(k1×k2, k2×k1)

Definition 2.8. Horn formulae are defined inductively as follows:

• [~x|>] is a Horn formula for any context ~x

• Each atomic formula is a Horn formula.

• If [~x|φ] and [~x|ψ] are Horn formulae with the same context then [~x|φ]∧(~x|ψ)
is a Horn formula.

The interpretation of [(x1, x2, ..., xk)|>], where xi∈Xi, in a category is the trivial
subobject of X1×X2×...×Xk induced by the identity arrow. A category that has
all finite limits is called a cartesian category. In particular a cartesian category
has all finite products and all pullbacks. In such a category we can interpret
[~x|φ]∧[~x|ψ] as the pullback of the subobjects [~x|φ]I and [~x|ψ]I .
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2.4 Theories and Models

Definition 2.9. An algebraic signature has no relation symbols except for an
equality relation symbol

[(x1, x2)|x1 = x2] X×X
=X

for each sort X.

Example 2.10. The signature of rings Σring given in Example 2.2 is an alge-
braic signature.

We now specify a deduction system using the sequent-calculus. We take as
logical axioms:

φ`~x>
(φ∧ψ)`~xφ
(φ∧ψ)`~xψ

where we use the notation φ`~xψ to indicate that the context of both φ and ψ
is ~x. We take as rules of inference:

φ`~xψ φ`~xχ
φ`~xψ∧φ

ψ`~x>

ψ1, ψ2, ..., ψm`~xψi

ψ1, ψ2, ..., ψm,>`~xφ

φ, (z = y)`~x:z:yχ

φ`~x:zχ [z/y]

Definition 2.11. An algebraic theory T over an algebraic signature consists of
a set of sequents of the form

>`Φi

where Φi is an atomic formulae. The members of this set are called the axioms
of the theory.
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Example 2.12. The theory of rings Tring is the theory over Σring that, for ki
variables of sort k and ~k = (k1, k2, k3), has the axioms:

>`~kk1 + (k2 + k3) = (k1 + k2) + k3

>`~kk1 + k2 = k2 + k1

>`~kk1 + 0 = k1

>`~kk1 + (−k1) = 0

>`~kk1×(k2×k3) = (k1×k2)×k3

>`~kk1×1 = k1

>`~k1×k1 = k1

>`~kk1×(k2 + k3) = k1×k2 + k1×k3

>`~k(k1 + k2)×k3 = (k1×k3) + (k2×k3)

Thus the theory of rings is an algebraic theory.

Definition 2.13. The syntactic category CT of an algebraic theory T has:

• objects are equivalence classes of all Horn formulae [~x|φ]. Two formulae
are equivalent precisely when:

[~x|φ] ∼ [~x|ψ] ⇐⇒ (φ`~xψ)∧(ψ`~xφ)

• arrows are equivalence classes of m-tuples of terms:

[~y|φ] [(x1, x2, ..., xk)|ψ]
((~y1|t1), (~y2|t2), ..., (~y3|t3))

where (~yi|ti) has output Xi, xi∈Xi and ~y = ~y1 : ~y2 : ... : ~yk with any
repeats removed. Two m-tuples of terms are equivalent precisely when:

((~y1|t1),(~y2|t1), ..., (~yk|tk))∼((~z1|s1), (~z2|s2), ..., (~zk|sk)) ⇐⇒
φ`~x((~y1|t1) = (~z1|s1))∧((~y2|t1) = (~z2|s2))∧...∧((~yk|tk) = (~zk|sk))∧ψ

Definition 2.14. A model of the theory T in a cartesian category D is a finite
limit preserving functor CT→D.

Equivalently, a model is an interpretation of the signature, terms and formulae
of the theory in a category such that the axioms of the theory hold. Since we
are working with algebraic theories the axioms are of the form:

>`~xt1 = t2

and are said to hold when the arrows interpreting the terms t1 and t2 are the
same.

10



2.5 Generalised Elements

Definition 2.15. An (generalised) element of R with stage of definition X is
an arrow with codomain R and domain X:

r : X→R

and we write r∈XR. If X is clear from the context or we want to reason about
a general stage of definition we write simply r∈R.

Each arrow α : Y→X provides (by precomposition) a different way of inter-
preting r as an element with stage of definition Y . Thus an element that has a
terminal object for stage of definition (a global element) has unique interpreta-
tion as an element with any other stage of definition.

Notation: If φ : X→RA and a : X→A then define φ(a) as the composite

X A×RA R
(a, φ) ev.

where ev. is the image of the identity morphism of RA under the adjunction
given by the λ-conversion:

1RA : RA→RA

ev. = 1RA : A×RA→R

Accordingly we will denote an element φ : X→RA as (a7→φ(a)).
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3 The Axiomatic Theory

We now proceed to describe some of the axiomatic theory of Synthetic Differ-
ential Geometry.

In 3.1 the notion of a Weil algebra is defined which we will use to formulate
the fundamental Kock-Lawvere axiom. The treatment is based on Section F1.1
of Volume 3 of [Johnstone, 2006]. For the applications in Sections 3.4 and 3.5 the
property of microlinearity is essential. The discussion of microlinearity in Sec-
tion 3.3 extends the account given in Chapter 6 of [Shulman, 2006]. Although
our definition of microlinearity therefore differs from that in [Lavendhomme,
1996] this reference was still useful for proving some of the Propositions in this
subsection.

The first application of the axiomatic theory is an alternative method for solving
a partial differential equation and is from [Kock and Reyes, 2006]. The final
application again follows [Johnstone, 2006] (in particular Proposition 1.2.15 of
Chapter F1.2 of Volume 3) in showing that the set of vector fields over a micro-
linear object in a smooth topos (E , R) can be given a R-Lie algebra structure.

3.1 Introduction

To motivate the definitions that follow, let us first try to formulate the ideas
mentioned in Section 1 in Set. Let R be a Q-algebra which will be thought of
as a ‘line’ and D be an object such that arrows D→R describe tangents to R.
That is we want:

Axiom 3.1. (Kock-Lawvere) Every arrow g : D→R is uniquely of the form:

g(d) = a+ bd

for d∈D and a, b∈R. Note that a = g(0).

But, in this context we quickly get a contradiction. Because in the internal logic
of Set the Law of the Excluded Middle holds we can define f : D→R such that:

f(d) =

{
1 if d = 0

0 otherwise

then by the Kock-Lawvere axiom

f(d) = 1 + bd

for an unique B∈R. But if 06=d∈D then 0 = f(d) = 1 + bd which upon mul-
tiplying by d gives: 0 = d + bd2 = d. But this is a contradiction with the
Kock-Lawvere axiom since if D = {0} then we cannot uniquely determine the
‘gradient’ b.

12



3.2 Algebras and Smooth Toposes

Definition 3.2. The signature of k-algebras Σk (where k is a ring) has:

• One sort A.

• Function symbols described by:

1 A A×A
1

0

+

×

and an additional function symbol k· : A→A (representing scalar multi-
plication) for every element of the ring k.

• The relation symbol:

[(a1, a2)|a1 = a2] A×A
=A

Definition 3.3. The theory of k-algebras Tk consists of all the equalities be-
tween composites of function symbols which express the usual notion of A being
a k-algebra.

Definition 3.4. A k-algebra V in a topos E is a product preserving functor

V : CTk
→E

where CTk
is the syntactic category of the theory of k-algebras. We call V (A) a

k-algebra object. Algk(E) is the full subcategory of [CTk
, E ] consisting of functors

which preserve products. We will write simply Algk for the case when E = Set.

Definition 3.5. A lined topos over k is a pair (E , R) where E is a topos and R
is a k-algebra object in E .

Definition 3.6. The (internal) Weil algebra over B for a k-algebra object B
is a functor W : CTk

→E such that:

• W(A)=Bn.

• µ := W(×) : B2n→Bn is bilinear in B and makes all elements of Bn of
the form (0, a2, a3, ..., an) nilpotent.

• W(1) = (1, 0, 0, ..., 0) : 1→Bn.

We say that W =W(A) is a Weil algebra object and n is the dimension of the
Weil algebra.

Example 3.7. Let n = 2 and µ = µε where µ(a, b, c, d) = (ac, bc + ad).
This is ‘ring of dual numbers multiplication’ reflects multiplication in the ring
R[X]/(X2).
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Definition 3.8. An internal R-algebra with R-algebra object V in a lined topos
(E , R) consists of the following arrows:

1 V V×V

R×V

1

0

+

×

·

(3.1)

which satisfy all the equalities that express the usual notion of being an algebra
over R with scalar multiplication · .

Definition 3.9. An R-algebra homomorphism between two internal R-algebras
V and W in a lined topos (E , R) is an arrow

α : V→W

that commutes with the arrows in Diagram 3.1. That is for example:

1 V

W

1V

1W
α

and

V×V V

W×W W

+V

(α, α)

+W

α

commute. We write RAlg for the category with objects all internal R-algebras
and arrows all R-algebra homomorphisms.

Definition 3.10. If W is a Weil algebra object then define

SpecR(W ) := RAlg(W,R)

We will also write SpecR(W ) as DW when we are working with fixed R.

The following Proposition is Exercise 4.2 in Part II of [Kock, 2006].

Proposition 3.11. RAlg(B,R) is an object of E for all B∈RAlg.
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Proof. Consider the two arrows:

B×B×RB
(+,1) // B×RB ev. // R

B×B×RB
(1,1,∆)// B×B×RB×RB

∼= // B×RB×B×RB
(ev.,ev.) // R

They correspond (after a lambda conversion) to arrows RB→RB×B . Take the
equaliser of these two arrows. In terms of generalised elements the equaliser
object will have elements f that satisfy

f(b1 + b2) = f(b1) + f(b2)

for bi elements of B. Repeat this process for multiplication and scalar multi-
plication in place of addition to obtain a subobject of RB whose elements are
R-algebra homorphisms from B to R.

Corollary 3.12. SpecR(W ) is an object of E.

Example 3.13. Let W be the Weil algebra object with dimension n = 2 and
µε as above. Then φ∈SpecR(W ) means that φ(a, b) = a+ bφ(0, 1) and:

(a+ bφ(0, 1))(c+ dφ(0, 1)) = (φ(a, b))(φ(c, d)) = φ(µ(a, b, c, d))

= φ(ac, ad+ bc) = ac+ (ad+ bc)φ(0, 1)

and so φ(0, 1)2 = 0. Therefore there is an isomorphism between SpecR(W ) and
the object {r∈R|r2 = 0} which is defined in the equaliser:

{r∈R|r2 = 0} R R
(−)2

0

Now consider a general Weil algebra object W . Let φ be a general element of
SpecR(W ) and let

φi = φ(0, 0, ..., 0, 1, 0, ..., 0)

where the 1 is in the ith place. Then the φi satisfy certain polynomial equations
pj(φ1, φ2, ..., φn) = 0 over R. (In particular, by the definition of Weil algebra,
each of the φi are nilpotent.)

The set of polynomial equations pj(φ1, φ2, ..., φn) = 0 that are satisfied by all
φ∈SpecR(W ) we will call the presentation of W . Note that all Weil algebra
objects W are finitely presented in that there is a finite set X of polynomials
over R such that if all the polynomials in X are equal to zero then all of the
equations in the presentation hold.

Furthermore, if W has the smallest presentation containing:

{(φc11 = 0), (φc22 = 0), ..., (φckk = 0)}∪
⋃

j
{(pi(φ1, φ2, ..., φk) = 0)}
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then we have that SpecR(W ) is isomorphic to:

{(r1, r2, ..., rn)∈Rn|(rc11 = 0)∧(rc22 = 0)∧...∧(rckk = 0)∧
∧n

i=1
(pi(r1, r2, ..., rk) = 0)}

the object which is defined by the appropriate equaliser (c.f. Example 3.13).
We will often identify these two isomorphic objects.

Notation: Let W be a Weil algebra object over k in (Set, k). Then for a
k-algebra object B we write

B⊗kW (3.2)

for the Weil algebra object over B that has the same presentation as W .

Definition 3.14. A smooth topos over k is a lined topos (E , R) such that for
all Weil R-algebra objects W :

1. (−)SpecR(W ) has a right adjoint.

2. (Kock-Lawvere) The map

αW : R⊗kW→RSpecR(W ) (3.3)

defined by
w 7→(φ 7→φ(w))

is an isomorphism of R-algebras.

Example 3.15. Let W be defined by the pair (R(0, 1)2, µε). Then the isomor-
phism given by the Kock-Lawvere condition is:

(a, b)7→(φ 7→φ(a, b) = a+ bφ(0, 1))

Therefore all maps φ∈SpecR(W ) are uniquely of the form a + bφ(0, 1) where
φ(0, 1) is a generalised element of R with nilsquare. Thus condition 2 is a gener-
alisation of the original Kock-Lawvere axiom we considered in the introduction.

The first condition in the definition of smooth topos expresses the notion that
the object SpecR(W ) is ‘infinitesimal’ or ‘tiny’. This essay will not explore the
consequences of this definition and although the model constructed in Section 4
does satisfy it we shall only give an outline of its verification. For more details
see F1.4 of Volume 3 of [Johnstone, 2006] and Chapters I.19 and III.8 of [Kock,
2006].

3.3 Microlinearity

Let P : J→C be a diagram. Let τ1 be a cocone under P in C with base L. Then
we define:

Definition 3.16. L is a B-colimit under P if any cocone τ2 over P with summit
B factors uniquely through τ1.
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In the following (E , R) is a smooth topos.

Definition 3.17. An infinitesimal diagram in E is a diagram P : J→C in which
all the objects in the image of P are of the form DW (that is the spectrum of
some Weil algebra object W ). We also allow the terminal object of E to be an
object in the image of the diagram P .

Definition 3.18. M∈E is microlinear if all R-colimits of infinitesimal diagrams
are M -colimits.

Notation: We write D(p) for the object

{(r1, r2, ..., rp)∈Rp|ri×rj = 0(∀1≤i, j≤p))}

in E and we write D = D(1) = {r∈R|r2 = 0}.

Proposition 3.19. In E the diagram:

1 D(q)

D(p) D(p+ q)

0

0

ι1

ι2

is an R-pushout, where

ι1(a1, a2, ..., ap) = (a1, a2, ..., ap, 0, 0, ..., 0)

and
ι2(a′1, a

′
2, ..., a

′
q) = (0, 0, ..., 0, a′1, a

′
2, ..., a

′
q)

Proof. Consider f1, f2 such that:

1 D(q)

D(p) R

0

0

f1

f2

(3.4)

commutes. By the Kock-Lawvere axiom we can identify:

f1 = a0 + a1d1 + ...+ apdp

and
f2 = a′0 + a′1d

′
1 + ...+ a′pd

′
p
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By commutativity of Diagram 3.4 we get that a0 = a′0. Next we see that f1 and
f2 factor via h : D(p+ q)→R defined by:

h = a0 + a1d1 + ...+ apdp + a′1dp+1 + ...a′qdp+q

(i.e. h◦ι1 = f1 and h◦ι2 = f2).

For uniqueness of the factorisation, suppose that

k = b0 + b1d1 + ...+ bp+qdp+q

satsifies k◦ι1 = f1 and k◦ι2 = f2. Now setting di = 0 for all i we find b0 = a0.
Subsequently setting di = 0 for all i except for dj gives:

bj = aj when j≤p

bj = a′j−p when j > p

that is k = h.

Definition 3.20. A double-coequaliser is the colimit of a diagram of the form:

A B
a, b, c

Proposition 3.21. The diagram in E:

D D×D D
ι1, ι2, 0 ×

is an R-double-coequaliser.

Proof. Write f : D×D→R as

f = a0 + a1d1 + a2d2 + a3d1d2

and suppose that

D D×D R
ι1, ι2, 0 f

commutes. Then
f(0, 0) = a0 = f(d, 0) = f(0, d)

so taking d1 = 0 we find a2 = 0 and taking d2 = 0 we find a1 = 0. Therefore

f = a0 + a3d1d2

and thus
f = h◦×

where h = a0 +a3d. Therefore we have the required factorisation. Suppose that
k = a + bd′ and that k◦× = f then a = a0 and a3 = b so we have required
uniqueness of factorisation.

18



We now prove a proposition that will be useful when we consider the Lie algebra
of vector fields in Section 3.5.

Proposition 3.22. If M is microlinear then MM is microlinear also.

Proof. Let P : J → E be a diagram with vertices Pi. Let τ : P⇒L be an
M -colimit under P . Let σ : P⇒MM be another cocone over P that has base
MM . For each m∈M we have that

φm◦σ

(where φm is evaluation at m) determines a cocone under P that has base M .
Since τ : P⇒L is an M -colimit there exist unique arrows gm : L→M inducing
factorisations of φm◦σ : P⇒M through τ : P⇒L. Combining these gives a
factorisation of (σ)i through ((τ)i, L).

If there were two distinct arrows f1, f2 : L→MM that induced factorisations
of σ : P⇒MM through τ : P⇒L then we could find l∈L such that f1(l)6=f2(l).
Then let φl : MM→M denote the evaluation at l:

φl(m 7→ψ(m)) = ψ(l)

We see that φl◦f1 and φl◦f2 are two distinct factorisations of φl◦(σ) (a cocone
with base M) through τ : P⇒L. This contradiction shows the L is an MM -
colimit also.

3.4 Derivatives and Differential Equations

In the following (E , R) will be a smooth topos over k.

Definition 3.23. An infinitesimally linear object M in (E , R) is one for which
all n-tuples of maps

ti : D→M

such that t1(0) = t2(0) = ... = tn(0) there exists an unique l : D(n)→M such
that

l◦ιi = ti

for all i, where ιi is the ith injection D :→D(n).

Corollary 3.24. If M is microlinear in (E , R) then M is infinitesimally linear.

Proof. This follows from Proposition 3.19.

Definition 3.25. A Euclidean object V in a smooth topos (E , R) is one for
which every arrow

D→V

is of the form
d7→a+ bd
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Definition 3.26. A tangent vector in M is an arrow D→M in (E , R).

Definition 3.27. The tangent bundle over M is the object MD in (E , R).

Definition 3.28. A vector field over M is an arrow X̂ : M→MD such that

X̂(m) = (d 7→m+ ξ(m)d)

for some ξ : M→M . We call ξ the principal part of X̂.

Note that any element of MD is of the form d7→a + bd by the fact that M is
Euclidean.

Now we make the λ-conversion:

X̂ : M→MD

X : D×M→M
Therefore a vector field on M is essentially the same as an infinitesimal action
X : D×M→M such that X(d,m) = m+ ξ(m)d.

We then make a further λ-conversion:

X : D×M→M
X̌ : D→MM

to see that a vector field on M is essentially the same as an infinitesimal trans-
formation X̌ : D→MM such that X̌(d) = (m7→m+ ξ(m)d).

Proposition 3.29. Let M be microlinear and X be a vector field on M . Then
for all (d1, d2)∈D(2):

f(d1, d2) := X(d2, X(d1,m)) = X(d1 + d2,m) =: g(d1, d2)

Proof. We will show that f◦ι1 = g◦ι1 and f◦ι2 = g◦ι2 and conclude that f = g
by Corollary 3.24.

f(0, d2) = X(d2, X(0,m)) = X(d2,m) = g(0, d2)

f(d1, 0) = X(0, X(d1,m)) = X(d1,m) = g(d1, 0)

Corollary 3.30. Let M be microlinear and X a vector field on M . Then:

X(d,m)−1 = X(−d,m)
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If M,N are two Euclidean objects then we can define the derivative f ′ of a
map f : M→N at x as the unique b(x)∈N that makes the following diagram
commute:

M N

D

f

x+ d
f(x) + d·b(x)

Now we describe how a vector field describes a differential equation. Let R̃ :
D×R→R be the universal action on R described by

R̃(d, r) = r + d

Intuitively we think of a solution of the differential equation defined by a vector
field on an Euclidean manifold as the locus traced out when we place an object
at some point on the manifold and it moves in the direction defined by the
vector field. Thus:

Definition 3.31. A solution to the differential equation described by X is an
arrow f : R→M such that

R M

D×R D×M

f

R̃

D×f

X

commutes. The initial value of the solution is f(0)

If ξ is the principal part of X then we have that f(r + d) = f(r) + d · ξ(f(r)).
Thus the differential equation described by X is:

df

dr
= ξ(f)

Now let X,Y be vector fields over Euclidean and microlinear objects M,N re-
spectively and having principal parts ξ, η respectively. Let fm0

: R→M be a
solution of X with initial value m0 and gn0

: R→N a solution of Y with initial
value n0. Assume that f(−)(r) is invertible for all r∈R: that is if we know the
value of the solution at r then we can uniquely determine its initial value.

We will define an exponential action on the exponential NM and interpret the
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resulting vector field as a differential equation. The exponential action Y X on
NM we will define as:

Y X(d, β) = Y (d,−)◦β◦X(−d,−)

Firstly, we see that
h(r) = g(−)(r)◦β◦f(−)(r)

−1

is a solution of Y X with initial value β = h(0):

Y X
(
d, g(−)(r)◦β◦f(−)(r)

−1
)

= Y (d,−)◦g(−)(r)◦β◦f(−)(r)
−1◦X(d,−)−1

= Y (d, g(−)(r))◦β◦X(d, f(−)(r))
−1

= g(−)(r + d)◦β◦f(−)(r + d)−1

= g(−)

(
R̃(d, r)

)
◦β◦

(
f(−)(R̃(d, r))

)−1

So we can find the solution to the differential equation described by the vector
field Y X . But what is the actual differential equation? We need to find the
principal part of Y X :

Y X(d, β)(m) = Y (d,−)◦β◦X(−d,m)

= Y (d,−)◦β(m− d · ξ(m))

= β(m− d · ξ(m)) + d · η(m− d · ξ(m))

= β(m)− d · η(m) · β′(m) + d · η(m)

Thus the principal part of Y X is:

η − ξ · β′

and so the differential equation described by the vector field Y X is:

∂h

∂t
= η(h)− ξ(m)

∂h

∂m
(3.5)

In summary: if we can find a solution f of

dF

dr
= ξ(F )

and a solution g of
dG

dr
= η(G)

then a solution to the differential equation 3.5 with initial value β is given by
h(r) = g(−)(r)◦β◦f(−)(r)

−1.
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3.5 The Lie Algebra of Vector Fields

In the following (E , R) will be a smooth topos over k.

Let X and Y be vector fields over a microlinear object M . Then we have

X̌, Y̌ : D→MM

Now define the sum X̌ + Y̌ : D→MM to be the composite:

D D(2) MM
∆

〈
X̌, Y̌

〉
where ∆ is the diagonal and

〈
X̌, Y̌

〉
is the arrow D(2)→MM whose restrictions

to the axes are X̌ and Y̌ respectively. The existence and uniqueness of
〈
X̌, Y̌

〉
is given by Proposition 3.19. Since X and Y are vector fields we see that
X̌(0) = Y̌ (0) = idM and so:

(X̌ + Y̌ )(d) =
〈
X̌, Y̌

〉
(d, d) = X̌(d)Y̌ (d) = Y̌ (d)X̌(d)

Define multiplication by r∈R as

(r·X)(d,m) = X(rd,m)

It is straightforward to see that the above definitions of addition and scalar
multiplication define an R-module structure on the set of vector fields over M .

Definition 3.32. An object M of E has Property W if for any τ : D×D→M
with

τ(d, 0) = τ(0, d) = τ(0, 0)

for all d∈D then there exists an unique t : D→M with

τ(d1, d2) = t(d1·d2)

Corollary 3.33. If M is microlinear then M has Property W.

Proof. This is a consequence of Proposition 3.21.

Recall that if M is microlinear then MM is also microlinear (Proposition 3.22)
and consider the map τ : D×D→MM defined by

τ(d1, d2) = X̌(−d1)◦Y̌ (−d2)◦X̌(d1)◦Y̌ (d2)

Then τ satisfies Property W and so there exists an unique (vector field)

[X̌, Y̌ ] : D→MM

such that [X̌, Y̌ ](d1·d2) = τ(d1, d2). In fact we have:
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Proposition 3.34. With [−,−] as a Lie bracket the set of vector fields over M
is an R-Lie algebra. That is:

(i) [−,−] is bilinear.

(ii) [X,Y ] + [Y,X] = 0.

(iii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Proof. We have already defined the addition and scalar multiplication that gives
the R-module structure. If we prove (i) then we only need to check that [−,−]
is bilinear in the second variable. Finally we will not verify (iii) - the details
can be found in section 3.2.2 of [Lavendhomme, 1996] or Proposition 1.2.15 of
Chapter F1.2 of Volume 3 of [Johnstone, 2006].

Antisymmetry:

[X̌, Y̌ ](d1·d2) = [X̌, Y̌ ](−d1·d2)−1

=
(
X̌(d1)◦Y̌ (−d2)◦X̌(−d1)◦Y̌ (d2)

)−1

= Y̌ (−d2)◦X̌(d1)◦Y̌ (d2)◦X̌(−d1)

= [Y̌ , X̌](d1·d2)

=
(
−[Y̌ , X̌]

)
(d1·d2)

Bilinearity in second variable:

[X̌, λY̌ ](d1·d2) = [X̌, Y̌ ](d1·λd2) = λ[X̌, Y̌ ](d1·d2)

In the following let {x, y} denote the group-theoretic commutator x−1y−1xy.

[X̌, Y̌ + Ž](d1·d2) = X̌(−d1)◦Y̌ (−d2)◦Ž(−d2)◦X̌(d1)◦Y̌ (d2)◦Ž(d2)

=
[
X̌(−d1)◦Y̌ (−d2)◦X̌(d1)◦Y̌ (d2)

]
◦Y̌ (−d2)◦X̌(−d1)◦Ž(−d2)◦X̌(d1)◦Ž(d2)◦Y̌ (d2)

= {X̌(d1), Y̌ (d2)}◦Y̌ (−d2)◦{X̌(d1), Ž(d2)}◦Y̌ (d2)

So we are done if we can show that Y̌ (d2) commutes with {X̌(d1), Ž(d2)}. To
show this we use the fact that [Y̌ , [X̌, Ž]] is a vector field:

idM = [Y̌ , [X̌, Ž]](0) = [Y̌ , [X̌, Ž]](d2·d1·d2)

and we are done.

Thus the readily visualizable concept that is the commutator of two infinitesimal
transformations defines a Lie bracket.
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4 C∞-algebras

This section introduces the theory of C∞-algebras which will be used to con-
struct a model of a smooth topos in Section 4.

We first describe a relationship between certain C∞-algebras and certain R-
algebras using Hadamard’s Lemma (Lemma 4.7). This is done in the same way
as in Chapter III.5 of [Kock, 2006]. We will use this connection to prove the
Kock-Lawvere axiom for our chosen model in Section 4.

We then introduce the idea of a germ-determined C∞-algebra. When we con-
struct our model in Section 4 we will want some kind of analogue of an open
covering of a smooth manifold. This will done with a suitable coverage (called
the Debuc coverage). The restriction to (finitely generated) germ-determined
C∞-algebras is then required to ensure that the Debuc coverage is subcanonical:
an important property that will be used in verifying both the Kock-Lawvere ax-
iom and that Weil spectra are tiny in our model. Chapter III.6 of [Kock, 2006]
and F1.3 of Volume III of [Johnstone, 2006] are used extensively in this subsec-
tion (3.2).

The final subsection will outline the argument that the ring of smooth func-
tions M→R for a smooth manifold M is finitely presented. Amongst other
things, this is important for showing that the category of smooth manifolds
embeds into our model.

4.1 C∞-algebras and Hadamard’s Lemma

Definition 4.1. The signature of C∞-algebras Σ∞ has:

• One sort A.

• A function symbol
An→A

for every smooth function Rn→R.

• The relation symbol:

[(a1, a2)|a1 = a2] A×A
=A

In particular all function/relation symbols in the signature of R-algebras are
function/relation symbols in the signature of C∞-algebras.

Definition 4.2. The theory of C∞-algebras T∞ has for axioms all the equalities
between composites of function symbols of the form kn→k which hold for the
corresponding smooth functions Rn→R.
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In particular all the equalities that hold in the theory of R-algebras also hold in
the theory of C∞-algebras.

Definition 4.3. An C∞-algebra V in a topos E is a product preserving functor

V : CT∞→E

where CT∞ is the syntactic category of the theory of C∞-algebras. We call V (A)
a C∞-algebra object. Alg∞(E) is the full subcategory of [CT∞ , E ] consisting of
functors which preserve products. We will write simply Alg∞ for the case when
E = Set.

We will now introduce the category of smooth manifolds which will embed into
our model in Section 4. For the purposes of this essay a smooth manifold will
be also Hausdorff and paracompact:

Definition 4.4. A paracompact smooth manifold is one for which every open
cover of a set (Vi)i can be refined to a cover (Uj)j such that:

• Each Uj is contained in one of the Vi.

• For every point p∈M we have that there exists an open neighbourhood
W of p such that the set of Uj that meet W is finite.

We call such a (Uj)j a locally finite refinement of (Vi)i

Definition 4.5. The category Man has objects as (Hausdorff, paracompact
and) smooth manifolds and arrows as smooth functions between them.

Example 4.6. Define
C∞(M) := Man(M,R)

where M∈Man. Then:

• C∞(M) is a C∞-algebra.

• C∞(R) is the free C∞-algebra on one generator.

and C∞(−) is a contravariant hom-functor Man→Algop∞ .

Lemma 4.7. (Hadamard’s Lemma) Let φ : Rn→R be smooth. Then there exist
smooth ψi : R→R such that:

φ(~x) = φ(~a) +

n∑
i=1

(xi − ai)ψi(~x) (4.1)

where ~x = (x1, x2, ..., xn) and ~a = (a1, a2, ..., an)

Proof. See Theorem 2.8 of [Nestruev, 2003]
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Iterating once, we obtain the result that there exist smooth ψi, νj : R→R such
that:

φ(~x) = φ(~a) +

n∑
i=1

(xi − ai)

ψi(~a) +

n∑
j=1

(xj − aj)νj(~x)


= φ(~a) +

n∑
i=1

(xi − ai)ψi(~a) +
∑

i,j<n+1

(xi − ai)(xj − aj)νj(~x)

Iterating further and setting ~a = ~x + ~y we obtain the result that there exist
smooth ψ~β : Rn→R and there exist unique φ~α : R2n→R such that:

φ(~x+ ~y) =
∑
|α|<l+1

φ~α(~x)·~y~α +
∑
|β|=l+1

ψβ(~x, ~y)·~y~β (4.2)

where k, αi, βi∈N, ~α = (α1, α2, ..., αn) and ~β = (β1, β2, ..., βn) are indicies vary-
ing over the sum with |~α| =

∑
i αi and:

~y~α = yα1
1 ·y

α2
2 ·...·yαn

n

We now use Equation 4.2 to relate coproducts in AlgR and Alg∞. Note that
the coproduct in AlgR of C and D is the tensor product C⊗RD and when D is
a Weil algebra over R the use of the symbol ⊗ for a tensor product coincides
with its use in Equation 3.2.

Let W be a Weil algebra object over R in (Set,R) and B∈Alg∞. Consider
B̄⊗RW where B̄ is B is taken with its R-algebra structure only. Then each
element of B̄⊗RW is of the form

ιB̄(b) + d

for d nilpotent and ιB̄ : B̄↪→B̄⊗RW the inclusion given in the coproduct.

Then, using Equation 4.2, we may define a C∞-algebra structure on B̄⊗RW .

First see that for each φ : R→R and

ιB ~(b) + ~d = (ιB(b1) + d1, ιB(b2) + d2, ..., ιB(bn) + dn)

then

φ(ιB ~(b) + ~d) =
∑
|α|<l+1

φ~α(ιB ~(b))·~d~α +
∑
|β|=l+1

ψβ(ιB ~(b), ~d)·~d~β

=
∑
|α|<l+1

φ~α(ιB ~(b))·~d~α
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where l is the least natural number such that dli = 0 for all i, and the φαi are
unique. Then we can define a canonical C∞-algebra structure (B⊗RW )∞ on
B⊗RW by letting

φ(ιB ~(b) + ~d) =
∑
|α|<l+1

φ~α(ιB ~(b))·~d~α =
∑
|α|<l+1

ιB(φ~α ~(b))·~d~α (4.3)

By construction the above equation defines the unique C∞-algebra structure
on B⊗RW that extends the R-algebra structure and makes ιB a C∞-algebra
homomorphism.

Proposition 4.8. Let W be a Weil algebra over R in (Set,R). The C∞-algebra
structure (B̄⊗RW )∞ defined on B̄⊗RW by Equation 4.3 is the coproduct:

B +∞W∞

in Alg∞ where W∞ is the canonical C∞-algebra structure which extends the
R-algebra structure on W .

Proof. By construction of the C∞-algebra structure on B̄⊗RW the injection
ιB̄ : B̄→B̄⊗RW is a C∞-algebra homomorphism B→(B̄⊗RW )∞. Now consider
an R-algebra of the form

Ā⊗RW

where A is a C∞-algebra. Then since the R-algebra structure on A⊗RW com-
pletely determines the C∞-algebra structure on (Ā⊗RW )∞ we have that R-
algebra homomorphisms out of Ā⊗RW are in fact C∞-algebra homomorphisms
out of (Ā⊗RW )∞. Thus ιW : W→B̄⊗RW is also a C∞-algebra homomorphism.

Now let φ : W→X and ψ : B̄→X be C∞-algebra homomorphisms. By forget-
ting the extra structure we see that there is a unique R-algebra homomorphism
σ : B̄⊗RW→X that has σ◦ιW = φ and σ◦ιB = ψ. But since σ is also a C∞-
algebra homomorphism (it has domain B̄⊗RW ) this proves the proposition.

Using the notation above (and that introduced in Equation 3.2) it is clear that

(B̄⊗RW )∞∼=B⊗RW

where the left hand side is the canonical C∞-algebra structure on an R-algebra
and the right hand side is an (internal) Weil algebra over a C∞-algebra B. Thus
we obtain by the Proposition above:

B +∞W∞∼=B⊗RW (4.4)

We conclude this section by noting that:

Proposition 4.9. Let A be a C∞-algebra. If I is an ideal of the ring defined
by forgetting the extra C∞-algebra structure of A and φ∈C∞(Rn) then:

xi − yi∈I⇒φ(~x)− φ(~y)∈I
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Proof. By Equation 4.1:

φ(~x)− φ(~y) =

n∑
i=1

(xi − yi)ψi(~x)

for some smooth ψi. But the right hand side is clearly an element of I.

This means that if we are given a C∞-algebra structure on A then the quotient
ring A/I can be given a well-defined C∞-algebra structure such that the natural
map:

A�A/I

is a C∞-algebra homomorphism. We say that a C∞ algebra is finitely pre-
sented/generated when the underlying ring is. Note that by Proposition 4.8
W∞∼=C∞(R)⊗RW is finitely presented (as in Section 3.2) if and only if its un-
derlying ring is.

4.2 Germ-determined C∞-algebras

4.2.1 Definitions and First Properties

Given a point p∈Rn we can define an equivalence relation on the functions
Rn→R by letting φ∼ψ when they coincide on some open neighbourhood of
p. We call this quotient ring the ring of germs at p. Formally (and more
generally), let J(p) be the ideal of functions of C∞(M) that vanish in some
open neighbourhood of p. Then

C∞(M)/J(p)

is the algebra of germs. By Proposition 4.9 we have a unique C∞-algebra
structure on C∞(M)/J(p).

Definition 4.10. Let φi : M→R be smooth where M is a smooth manifold.
Then supp(φi) is the closure of the set of points in V for which φi is non-zero.
We say that a collection of smooth φi is locally finite if the supp(φi) are locally
finite.

Definition 4.11. A locally finite partition of unity φi subordinating an open
cover (Ui)i of a smooth manifold M are smooth maps

φi : Ui→R

such that

(i) supp(φi)⊆Ui.

(ii) for every point p∈M we have that there exists a neighbourhood W of p
such that W meets only finitely many of the supp(φi).

(iii)
∑
i φi = 1.
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We will use locally finite partitions of unity to extend functions bi : Ui→R to
a function b :

⋃
i Ui = V : →R. As an example, although the function φibi is

only defined on Ui it can naturally be extended to a smooth map V→R because
φi = 0 outside Ui. To aggregate the bi we will often form the sum

∑
i φibi which

has domain V .

Therefore we will need following theorem from the general theory of Differential
Geometry:

Theorem 4.12. Let X be a paracompact Hausdorff space. Then for each open
cover of X there is a locally finite partition of unity.

Proof. See Theorem 1 of Chapter 3 of [Arhangel’skii, 1995].

Definition 4.13. Let A be a C∞-algebra and X be a set of elements of A.
Then A[X−1] is the universal solution in Alg∞ of adjoining inverses of all x∈X
to A.

Definition 4.14. Σp (defined in context of a C∞-algebra A) is the set of all
elements a∈A such that a(p) 6=0.

Proposition 4.15.
C∞(M)/J(p)∼=C∞(M)[Σ−1

p ]

Proof. We need to show that:

(i) all f∈C∞(M) such that f(p) 6=0 are invertible in C∞(M)/J(p).

(ii) all g∈C∞(M) that vanish on a neighbourhood of p are zero in C∞(M)[Σ−1
p ].

Then we will be done by the universal properties of the two objects and the fact
that if there is a unique arrow A→B and a unique arrow B→A then A∼=B.

(i) Let f be such that f(p) 6=0. Then there exists a neighbourhood U of p
such that 1

f is well-defined. Let φ, ψ be a (clearly locally finite) partition

of unity subordinate to U, {p}C . Note that ψ∈J(p). Then we extend 1
f

to φ 1
f . Intuitively we expect this to be the inverse of f in C∞(M)/J(p)

because in this quotient ring functions coinciding on a neighbourhood of
p are the same. Indeed:

fφ
1

f
= φ = 1− ψ≡1

(ii) Let g vanish on the neighbourhood U of p. Again let φ, ψ be a partition
of unity subordinate to U, {p}C . Note that φ∈Σp since φ(p) = 1. Then
φ·g≡0 on M . But φ is invertible in C∞(M)[Σ−1

p ] and so g≡0.
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Definition 4.16. A point of a C∞-algebra A is a C∞-algebra homomorphism

A→R

The following theorem from the general theory of differential geometry justifies
this definition:

Theorem 4.17. Let M be a manifold. If p : C∞(M)→R is an R-algebra map
then there exists an unique point P∈M such that p is evaluation at P . That is:

p(f) = f(P )

for all f∈C∞(M)

Proof. See Corollary 3.3 in [Kriegl et al., 1989].

Because of Proposition 4.15 the following definition legitimately generalises the
notion of germ algebra:

Definition 4.18. For any C∞-algebra A the germ algebra at a point p : A→R
is the C∞-algebra A[Σ−1

p ] where Σp = {a∈A|p(a)6=0}.

Note that for C∞-algebras of the form C∞(M) for some smooth manifold M
we recover the germ algebra described at the beginning of this section.

Notation: Let A be a C∞-algebra. For a∈A we write ap for the image of a
under the natural map

A�A[Σ−1
p ]

For I/A we write
Ip := 〈ap : a∈I〉 /Ap

In words: ap∈Ip if a has the same germ at p as some element in I.

Definition 4.19. An ideal I of a C∞-algebra A is germ-determined if

I = Î := {a∈A|ap∈Ip(∀p : A→R)}

A C∞-algebra is germ-determined if the zero ideal is germ-determined.

Remark 1. We have that I⊆Î and

I = Î ⇐⇒ (ap∈Ip⇒a∈I)

In words: if (at every point p) a has the same germ as some element of I then
a∈I.

Example 4.20. C∞(Rn)/I is germ-determined if I is germ-determined.
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4.2.2 Finitely Presented Implies Germ-determined

Lemma 4.21. Let I/C∞(M) and b∈Î. Then for each point p of C∞(M):

b = x(p) + y(p)

where x(p)∈I and y(p)∈J(p) (and so y(p) vanishes on some neighbourhood V (p)

of p).

Proof. b∈Î implies that for each point p of A we have bp∈Ip. That is we can

find x(p)∈I such that x
(p)
p = bp. So on some neighbourhood V (p) of p

b− x(p)

vanishes.

Lemma 4.22. Let U be an open set in a smooth manifold M and V be a closed
set contained in U . Then there exists a smooth function ψ : M→R such that ψ
is zero outside U and 1 inside V .

Proof. Consider a locally finite partition of unity φ, ψ subordinating the open
cover U, V C . Then ψ is as required.

Recall that because of Proposition 4.15 we can conflate points p∈M with points
of C∞(M) (that is C∞-algebra homomorphisms p : C∞(M)→R).

Theorem 4.23. If
K/C∞(M)

is germ-determined and a∈C∞(M) then 〈K, a〉 = I is germ-determined.

Proof. Let b∈C∞(M) such that bp∈Ip for all points p in C∞(M). We will show
that b∈I.

By Lemma 4.21 we have that

b = x(p) + y(p)

where x(p)∈I and y(p) vanishes on a open neighbourhood V (p) of p.

Take a locally finite refinement (Ui)i of the cover given by all the V (p) (which
is possible since M is paracompact). Then let φi be a locally finite partition of
unity subordinating (Ui)i. This means that for Ui⊆V (pi)

φib = φix
(pi) + φiy

(pi) = φix
(pi)∈I

and so φib = k(pi) + l(pi)a for l(pi) smooth and k(pi)∈K.

Now we would like to sum over i to regain b but we don’t know that l(pi)

and k(pi) are locally finite. (Local finiteness will ensure that for each m∈M
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the sums
∑
i l

(pi)(m) and
∑
i k

(pi)(m) are only over a finite number of non-zero
terms and so we can manipulate the summations more freely.) However, we
may make them so by multiplying by a smooth function ψi (whose existence is
assured by Lemma 4.22) which is zero outside Ui and 1 inside supp(φi). This
means that the supports of ψim

(pi) and ψik
(pi) are contained in Ui and (Ui)i is

locally finite. So we have:

φib = ψik
(pi) + ψim

(pi)a

since φi = 0 outside Ui. Thus:

b =
∑
i

φib =
∑
i

ψik
(pi) +

∑
i

ψil
(pi)a

So we will be done if we can show that
∑
i ψik

(pi)∈K. But k(pi)∈K so:

(k(pi))p = (ψik
(pi))p∈Kp

and therefore (∑
i

ψik
(pi)

)
p

∈Kp

for all p. But K is germ-determined so we do indeed have
∑
i ψik

(pi)∈K.

Corollary 4.24. All finitely presented C∞-algebras are germ-determined.

4.3 Characteristic Functions and Whitney Embedding The-
orem

In this section we will sketch the proof that C∞(M) is finitely presented for all
smooth manifolds M .

Lemma 4.25. Let U be an open subset of a smooth manifold M . Then there
exists a characteristic function χU : M→R which has

{m∈M |χU (m)6=0} = U

Proof. First consider the case that U is an open ball within a single coordinate
chart with ~0 as the centre of the ball. Then define χU to be 0 on UC and on U :

χU (~x) = exp

(
1

|x|2 −R2

)
where R is the radius of the ball (which is well-defined since there is a single
coordinate chart containing U).

For general U write U =
⋃
i Ui and define

χU (~x) =
∑
i

χUi(~x)·ai

where ai∈R are chosen so that χU is smooth. These can be found because χUi

have compact support.
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Lemma 4.26.
C∞(U)∼=C∞(Rn)[χ−1

U ]

for all open U ⊆ Rn.

Proof. Let

Û = {(x1, x2, ..., xn, y)∈Rn|yχU (x1, x2, ..., xn) = 1}

Then
C∞(U)∼=C∞(Û)∼=C∞(Rn)[χ−1

U ]

by the universal property of C∞(Rn)[χ−1
U ].

Proposition 4.27. C∞(U) is finitely presented for all open U ⊆ Rn.

Proof. Let Û be as above. Then

C∞(U)∼=C∞(Rn+1)/I

where I is the ideal of all φ : Rn+1→R that vanish on Û . But by Hadamard’s
Lemma if ~x = (x1, x2, ..., xn+1) then:

φ(~x) = (xn+1·χU (x1, x2, ..., xn)− 1)·ψ

for some smooth ψ : R2n→Rn. Therefore I is in fact principally generated and
C∞(U) is finitely presented.

In order to conclude that C∞(M) is finitely presented for all smooth manifolds
M we use the following result from the general theory of differential geometry:

Theorem 4.28. (Whitney) Every manifold M embeds in RN for some N∈N.

Proof. See Section 8 of Chapter 1 of [Guillemin and Pollack, 1974].

Therefore M can identified with a retract of an open subset U ⊆ RN . Since
C∞(M)∼=C∞(U) we conclude from Proposition 4.27 that:

Corollary 4.29. C∞(M) is finitely presented for all smooth manifolds M .
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5 Models for Synthetic Differential Geometry

Now we construct a model of a smooth topos.

Following [Johnstone, 2006] we say that a topos E is a well-adapted model
of Synthetic Differential Geometry if:

I. There is a full embedding ι : Man→E .

II. ι sends open covers in Man to jointly epimorphic families in E .

III. The Kock-Lawvere axiom holds when (E , ι(R)) is a taken to be the lined
topos in the definition of smooth topos (Definition 3.14).

IV. A certain type of pullback (transversal pullbacks) are preserved by ι.

We shall show that if C is any well-adapted category (see Definition 5.1) then
for

E = Sh(Cop, D)

and ι the composite:

Man Cop Sh(Cop, D)
C∞(−) y

the conditions I, II and III are satisfied. The verification of IV will not be given
in this essay. Here D is the Debuc coverage (see section 5.3), Sh(Cop, D) is the
topos of sheaves on the site (Cop, D) and y is the Yoneda embedding.

This section is based on F1.3 of Volume 3 of [Johnstone, 2006] and the veri-
fication of IV may be found there. Chapters III.7 and III.8 of [Kock, 2006] were
also used.

Finally we shall show that Weil spectra are tiny in the presheaf topos [Alg∞, Set]
and refer the reader to the end of Chapter III.8 of [Kock, 2006] for the work
required to extend this result to show that the first condition in the definition
of smooth topos (that Weil spectra are tiny) is satisfied in Sh(Cop, D).

5.1 Well Adapted Categories

Definition 5.1. A well-adapted category C is a full subcategory of Alg∞ such
that:

(i) C contains all C∞-algebras of the form C∞(M) for M a smooth manifold.

(ii) For any A∈C and Weil algebra W over R we have that A⊗RW∈C.

(iii) If A∈C and a∈A then A[a−1]∈C.

(iv) All objects of C are finitely generated and germ-determined.
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Well-adapted categories include:

(a) The category of all C∞-algebras of the form C∞(M)⊗RW for M a smooth
manifold.

(b) The category of finitely presented C∞-algebras.

(c) The category of finitely generated and germ-determined C∞-algebras.

We have proved enough to verify that (b) is a well-adapted category:

(i) Corollary 4.29 is that all C∞-algebras of the form C∞(M) are finitely
presented.

(ii) A⊗RW is finitely presented if A is.

(iii) A[a−1] is finitely presented if A is.

(iv) Corollary 4.24 is that all finitely presented C∞-algebras are germ-determined.

In the following sections (4.1.1-4.1.3) we will work with an arbitrary well-
adapted category C.

5.2 The Embedding Man↪→Cop

Recall Theorem 5.2 from the classical theory of differential geometry:

Theorem 5.2. Let M be a manifold. If p : C∞(M)→R is an R-algebra map
then there exists an unique point P∈M such that p is evaluation at P . That is:

p(f) = f(P )

for all f∈C∞(M)

Proof. See Corollary 3.3 in [Kriegl et al., 1989].

Since the Yoneda embedding is full and faithful, in order to show that the
functor

y◦C∞(−) : Man→Sh(Cop, D)

is a full and faithful it will suffice to show that

C∞(−) : Man→Cop

is. First we prove:

Theorem 5.3.
C∞(−) : Man→AlgopR

is full and faithful.
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Proof. C∞(−) is faithful: Let h6=k : M→N . Then there exists a point x∈M
such that h(x)6=k(x) and we can find f : N→R taking different values on h(x)
and k(x). Thus f◦h6=f◦k. Now considering f as an element of C∞(N) we see
that C∞(h)6=C∞(k).

C∞(−) is full: Let φ : C∞(N)→C∞(M). Now for every y∈M we may compose
with the map C∞(y) that is evaluation at y to get:

C∞(N) C∞(M) R
φ C∞(y)

But by Theorem 5.2 we see that C∞(y)◦φ is the same as evaluation at some
point k(y)∈N . Thus k(y) defines a map k : M→N . By construction for
f∈C∞(N):

φ(f)(y) = f(k(y)) = (f◦k)(y)

and so C∞(k) = φ.

Now we use the fact that the forgetful functor Algop∞→Alg
op
R is faithful to get

that C∞(−) : Man→Alg∞ is full and faithful. Then we appeal to condition (i)
of the definition of well-adapted category to conclude that C∞(−) : Man→Cop
is full and faithful for any well-adapted category C.

5.3 The Debuc Coverage

Now we use the identification

C∞(U) = C∞(M)[χ−1
U ]

(c.f. Lemma 4.26 where U is an open subset of a smooth manifold M and
χU is any function M→R for which χU (m) is non-zero precisely when m∈U)
to transfer the notion of an open cover from Man to Cop for a well-adapted
category C.

Definition 5.4. The Debuc coverage D on Cop (where C is a well-adapted
category) has covering families (of each A∈C) given by all families

(fi : A→A[a−1
i ])i∈I

in C such that every point p : A→R factors through some fi. Equivalently: for
each point p there is at least one i with p(ai)6=0. We say that the family (fi)i
is a Debuc cover of A.

The existence of a smooth characteristic function χU for every open set U⊆M
(Lemma 4.25) implies that C∞(−) takes open covers in Man to Debuc covers
in Cop: first we express

C∞(U) = C∞(M)[χ−1
U ]
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Thus every inclusion U↪→M is sent to a restriction

C∞(M)→C∞(U) = C∞(M)[χ−1
U ]

by C∞(−). Therefore an open cover (Uα)α of M is sent to a Debuc cover.

Before we show that the Debuc covering is subcanonical we prove:

Lemma 5.5. Let A∈Alg∞ be finitely generated and germ-determined. Then
a∈A is invertible if and only if for all points p : A→R we have that p(a)6=0.

Proof. Since A is finitely generated and germ-determined we have that

A = C∞(Rn)/I

where I is germ-determined. Choose f such that f̄ = a where f̄ is the image of
f under the natural map C∞(Rn)�C∞(Rn)/I. Then

A/(a)∼=C∞(Rn)/ 〈I, f〉

and so by Proposition 4.23 we have that A/(a) is germ-determined. But by
p(a) 6=0 for all p : A→R we see that A/(a) has no points and thus (a) = A.

Corollary 5.6. Let V be an open subset of R and let

π : C∞(Rn)�A

be an epimorphism. If every point p of A has p◦π as a point of C∞(V ) then π
factors through the restriction

C∞(Rn)→C∞(V )

Proof. If every point p of A has p◦π as a point of C∞(V ), then p(π(χV )) 6=0.
But then π(χV ) is invertible in A by the previous Lemma and (by Lemma 4.26)
we have that

C∞(V ) = C∞(Rn)[χ−1
V ]

and we get the required factorisation.

Theorem 5.7. The Debuc coverage on Cop is subcanonical.

Proof. Since every representable functor preserves limits it suffices to show that
for all A∈C

A
∏n
i=1A[a−1

i ]
∏

1≤i,j≤nA[a−1
i ]×AA[a−1

i ]
(5.1)
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is an equaliser in Alg∞, where A[a−1
i ]×AA[a−1

j ] is the pushout:

A A[a−1
i ]

A[a−1
j ] A[a−1

i ]×AA[a−1
j ]

fi

fj

and (fi : A→A[a−1
i ])i∈I a Debuc cover.

Now, A is finitely generated so we can find π′ : C∞(Rm)�A. Choose Ui open
subsets of Rn such that:

C∞(Rn) C∞(Ui)

A A[a−1
i ]

π′

fi

πi

is a pushout. To show that Diagram 5.1 is an equaliser we must pick b̄i∈A[a−1
i ]

such that (b̄1, b̄2, ..., b̄n) is equalised by the parallel arrows in 5.1 and show that
(b̄1, b̄2, ..., b̄n) factors through (f1, f2, ..., fn).

Let
⋃
i Ui = V . Then every point p of A factors through some fi (by definition

of Debuc cover) and so after precomposition with π′ is a point of C∞(Ui). In
particular it is a point of C∞(V ). So by Corollary 5.6 there exists a π such
that π′ = π◦restV where restV : C∞(Rn)→C∞(V ) is the restriction. Choose
bi∈C∞(Ui) such that πibi = b̄i. We will extend bi to a map V→R by using a
locally finite partition of unity φi subordinating (Ui)i. Firstly, φibi extends to
a map V→R and so b :=

∑
i φibi∈C∞(V ).

Now fix a point p : Ui→R. Choose a neighbourhood W of p such that W
only meets finitely many supp(φi) (which is possible because (φi)i is locally fi-
nite). Next choose an open set W ′⊆W such that p is a point of all the supp(φi)
that meet W ′. Let the set of i such that supp(φi) meets W ′ be I. Then:

(fiπb)p = (πb)p

= (π
∑
i∈I

φibi)p

= (π
∑
i∈I

φibi)p
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By definition of W ′.

Let ιi, ιj be the inclusions of A[a−1
i ], A[a−1

j ] respectively into A[a−1
i ]×AA[a−1

j ].
Now since the bi are equalised by the two parallel lines in 5.1, we have that
ιi(bi) = ιj(bj) for all i, j. Now let p be a point of A that factors through A[a−1

i ]
and A[a−1

j ]. Then localising: (bj)p = (bi)p. Therefore since we defined I so that
p is a point of all the supp(φi) that meet W :

(fiπb)p =
∑
i∈I

(πφi)p(πibi)p

=
∑
i∈I

(πφi)(πjbj)p = (πjbj)p

However, A[a−1
i ] is germ-determined so:

fi(πb) = πbj = b̄j

and we have a factorisation of (b̄1, b̄2, ..., b̄n) through (f1, f2, ..., fn).

5.4 The Kock-Lawvere Axiom

Consider the site (Cop, D) for a well-adapted category C and D the Debuc cov-
erage on Cop. Then since D is subcanonical the functor

R := Alg∞(C∞(R),−)

which takes a C∞-algebra to its underlying set is an object of Sh(Cop, D). We
want to show that for all Weil algebras over R:

RSpecR(W )∼=R⊗RW

as R-algebras. To this end let A∈Cop and consider:

RSpecR(W )(A) = Nat (Alg∞(A,−)×SpecR(W ), Alg∞(C∞(R,−))

Recall (from Section 3.2) that SpecR(W ) is defined as an equaliser of parallel
arrows with domain and codomain Rd (where d is the dimension of the Weil
algebra W ). For example:

SpecR(W ) = {r∈R|r2 = 0} R R
(−)2

0

But in Sh(Cop, D) this equaliser is computed pointwise. Therefore SpecR(W )(A)
is the equaliser of parallel arrows in Set with domain and codomain RAd (recall
that RA is the underlying set of the C∞-algebra A). In our example:

SpecRA(W ) = {a∈RA|a2 = 0} RA RA
(−)2

0
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Thus SpecR(W )(A) is SpecRA(W ). This means that SpecR(W ) is represented
by the canonical C∞-algebra extending the algebra structure on W :

SpecR(W ) = Alg∞(W∞,−)

which is a sheaf since D is subcanonical. Therefore:

RSpecR(W )(A) = Nat (Alg∞(A,−)×Alg∞(W∞,−), Alg∞(C∞(R,−)))
∼=Alg∞(C∞(R), A+∞W∞)
∼=R(A+∞W∞)
∼=R(A⊗RW )

= (R⊗RW )(A)

Using Proposition 4.8. So the R-algebra homomorphism

αW : R⊗RW→RSpecR(W ) (5.2)

between these functors defined by

w 7→(φ 7→φ(w))

is an isomorphism of R-algebras. Note that we verified (in a special case) that
αW is indeed an R-algebra homomorphism in Example 3.15. The general case
is only more difficult in terms of notation.

5.5 Weil Spectra are Tiny

Lemma 5.8. For any B in a category A the endo-functor

(−)yB : [Aop, Set]→[Aop, Set]

preserves colimits. Here y : A→[Aop, Set] is the Yoneda embedding.

Proof. We will show that

(XyB)(C)∼=(colimi(X
yB
i ))(C)

for all C∈A and where colimiXi = X. Now,

(XyB)(C)∼=[Aop, Set](yC,XyB)
∼=[Aop, Set](yC×yB, colimiXi)
∼=[Aop, Set](y(C×B), colimiXi)
∼=(colimiXi)(C×B)
∼=colimi(Xi(C×B))
∼=colimi[Aop, Set](y(C×B), Xi))
∼=colimi[Aop, Set](yC×yB,Xi))

∼=colimi[Aop, Set](yC,XyB
i )

∼=colimi(X
yB
i (C))

∼=(colimi(X
yB
i ))(C)
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Definition 5.9. The category of elements of F∈[Aop, Set] denoted by
∫
A F has:

• pairs (x, c) as objects where c∈A and x∈F (c).

• arrows

(x, c) (y, d)
f∗

are arrows

d c
f

in A such that (Ff)y = x. i.e. the ‘restriction’ of y along f is x.

Lemma 5.10. A presheaf F∈[Aop, Set] is a colimit of a diagram of repre-
sentable functors in [Aop, Set].

Proof. There is a projection functor:∫
A F A

πA

which takes

(x, c) (y, d) to d c
f∗ f

This defines a diagram in A. Composing with the Yoneda embedding y :
A↪→[Aop, Set]: gives us a diagram in [Aop, Set]:∫

A F A [Aop, Set]
πA y

We will show that the colimit of this diagram is F .

F is the summit of a cone over y◦πA: For each (x, c)∈
∫
A F , we must spec-

ify as a leg of the cone an arrow yc→F in [Aop, Set]. The natural choice is the
arrow that corresponds to x∈F (c) under the bijection:

F (c)∼=[Aop, Set](yc, F )

given by the Yoneda Lemma. The definition of the category of elements ensures
that these legs describe a cone τ1.

This cone is a limit: Let G be the summit of another cone τ2 over y◦πA.
Then for each (x, c)∈

∫
A F we have a leg yc→G. But yc→G corresponds using

the Yoneda Lemma to a point x′∈G(c). Thus we define F→G pointwise by:

F (c)→G(c)

x 7→x′
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which (again by the definition of the category of elements) gives a factorisation
of the cone τ2 through the cone τ1.

Now that we know that (−)yB : [Aop, Set]→[Aop, Set] preserves colimits and
that any presheaf can be written as a colimit of representable presheaves, we
have enough to specify a right adjoint to (−)yB . This we will discover in a
purely formal manner:

[Aop, Set](XyB , Y )∼=[Aop, Set]((colimiyXi)
yB , Y )

∼=[Aop, Set](colimi(yXi)
yB , Y )

∼=limi[Aop, Set]((yXi)
yB , Y )

∼=limi[Aop, Set](yXi, [Aop, Set](y(−)yB , Y ))

∼=[Aop, Set](colimiyXi, [Aop, Set](y(−)yB , Y ))

∼=[Aop, Set](X, [Aop, Set](y(−)yB , Y ))

So the right adjoint of (−)yB is

Y 7→[Aop, Set](y(−)yB , Y ) (5.3)

Now let A = Cop in the above where Cop is a well-adapted category. Let D be the
Debuc coverage on Cop. Since D is subcanonical we have that yW∈Sh(Cop, D)
and

(−)yW : Sh(C, D)→Sh(C, D)

It remains to show that the right adjoint to (−)yW in [C, Set] is an endofunctor
on Sh(Cop, D) and for this we refer the reader to the end of Chapter III.8 in
[Kock, 2006].
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